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Abstract
Quantum computers are, as of yet not realized on the large scale, devices that can
solve some problems exponentially faster than any current classical computer. Their
operation principle is to encode a computational process in the temporal evolution
of multiple coupled two-state quantum mechanical systems, qubits. Important
elementary building blocks of such devices are two-qubit logic gates which arise
from interactions between two qubits. On a quantum computer, the algorithms are
implemented by combining multiple one- and two-qubit gates to reach the desired
time evolution.

In this thesis, a tunable coupler scheme proposed by Yan. et al (2018) for the
implementation of two-qubit gates is studied by simulating an example system. The
simulated system consists of three superconducting transmon qubits capacitively
coupled to each other. One of the qubits operates as a tunable coupler between the
other two, and by adjusting its frequency, the iSWAP gate is realized. It is found
that gate errors of below 10−5 can be reached with gate durations of 100 ns for a
non-dissipative system by controlling the coupler frequency with a sine-shaped pulse.
Two other control pulses are compared, and it is observed that the pulse shape has a
large effect when attempting to reach very low errors.
Keywords quantum computing, two-qubit gate, iSWAP, transmon, tunable coupler
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1 Introduction
Quantum computers are future devices that are, in theory, able to solve problems
that are not tractable for classical computers [1]. They work by exploiting the laws
of quantum mechanics to execute algorithms allowing a large speedup compared
with known classical algorithms in some cases. Notable algorithms that are able to
use quantum computers for such advantage are Shor’s algorithm for factoring large
numbers [2] and Grover’s algorithm for database searches [3]. Another important area
where quantum devices might have a significant advantage compared with classical
computers is the simulation of quantum systems [4], first proposed by Richard
Feynman in 1982 [5].

Many different prototypes of quantum computers have been envisioned and
developed. Superconducting circuits provide one of the most promising schemes to
implement the elementary building blocks of quantum computers, quantum bits, or
qubits. The use of superconducting circuits in quantum information processing was
first proposed over 20 years ago [6], with the idea of using a so-called Cooper pair box,
composed of low-capacitance Josephson junctions, as a qubit. A few years later the
first experimental realizations of such circuits were achieved [7, 8]. Superconducting
qubits have since undergone a rapid development, with the introduction of numerous
designs, such as the phase qubit [9], the transmon [10], and the fluxonium qubit [11].
The field remains very active and superconducting quantum computers are advancing
towards useful and scalable quantum information processing applications [12].

In this thesis, we simulate a tunable-coupling system proposed by Yan et al. [13]
for implementing two-qubit quantum logic gates between transmon qubits. The
system functions by using three qubits, one used as a coupler between the other
two, to implement gate operations by modulating the resonance frequency of the
coupler. This design should be able to reduce certain errors caused by unintentional
coupling between qubits. The gate implemented by the system is the iSWAP gate,
which has been shown to form a universal set of gates together with single-qubit
gates [14], implying that any many-qubit gate can be realized by applying these
gates on a many-qubit system. We compare three control pulses with different pulse
lengths and amplitudes and find that the shape of the pulse has a strong effect on
the resulting gate error.

Section 2 discusses the theoretical background relevant to this thesis. In Sec. 3,
we introduce the simulated system and discuss some important matters related to
the simulation. Section 4 presents the results of the simulations and finally in Sec. 5
conclusions are drawn and possible improvements to the system are discussed.
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2 Theoretical background
In this section, some relevant theoretical concepts are considered. We begin with a
short overview of the required theory of quantum mechanics, proceed with the basics
of quantum computing, and finish with a discussion on superconducting qubits.

2.1 Relevant concepts in quantum mechanics
2.1.1 Quantization of a physical system

We employ a description of a quantum-mechanical system which proceeds as follows.
One begins with the analogue classical system, for which the Lagrangian function is
given by

L(q1, q̇1, q2, q̇2, ...) = T (q̇1, q̇2, ...) − V (q1, q2, ...), (1)

where qi are so-called generalized position coordinates, V is the potential energy and
T is the kinetic energy of the system. For the quantization of the system, we need to
find the Hamiltonian of the system. For this purpose, the generalized momenta are
defined with the identity

pi = ∂L
∂q̇i

. (2)

The variables qi and pi are also called canonical conjugate variables. Using a Legendre
transformation one arrives at the Hamiltonian

H(q1, p1, q2, p2, ...) =
∑

i

piqi − L. (3)

Classically, the equations of motion could then be derived from the Hamiltonian.
In quantum mechanics, however, the system cannot be simply described with a
group of position and momentum coordinates. Instead, the state of the system is
described with a state vector |ψ⟩ in an abstract vector space, the Hilbert space [15].
The Hamiltonian is then substituted by an operator acting on the state vectors, the
Hamiltonian operator Ĥ. It is constructed such that the canonical conjugate variables
qi and pi in H are replaced with the corresponding position and momentum operators
q̂i and p̂i. The eigenstates of these operators in the Hilbert space have eigenvalues
corresponding to classical position and momentum coordinates. In addition, for all
of the pairs (q̂i, p̂i) the canonical commutation relation [q̂i, p̂i] = q̂ip̂i − p̂iq̂i = iℏ is
satisfied, where ℏ is the reduced Planck constant [15]. Importantly, the temporal
evolution of all state vectors is determined by the Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ . (4)

2.1.2 Methods for solving the Schrödinger equation

The central question in quantum mechanics is how to solve the Schrödinger equation
for different systems. One approach is to use the eigenstates of the time-independent
Hamiltonian operator, their time evolution being |ϕ(t)⟩ = e− i

ℏEt |ϕ⟩, where E is the
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eigenvalue, or in this case the eigenenergy of |ϕ⟩. The eigenstates of Ĥ form an
orthogonal basis in the Hilbert space, implying that the evolution of any state |ψ⟩
can be obtained by expressing the state as a linear combination of the eigenstates of
the system [15]. Another approach is to define the time evolution operator Û(t), i.e.,
Û(t) |ψ⟩ = |ψ(t)⟩. For time-independent Hamiltonians, we may express it as

Û(t) = e− i
ℏ Ĥt =

∞∑
k=0

(−i)kĤktk

k!ℏk
, (5)

which can be confirmed by inserting |ψ(t)⟩ = e− i
ℏ Ĥt |ψ(0)⟩ in Eq. (4). If the

Hamiltonian has an explicit time dependence due to, for instance, a driving field,
the above methods do not apply. In this case, the evolution of the system is divided
into a sequence of periods, for which the Hamiltonian is essentially constant. Thus
we obtain

|ψ(t)⟩ = e− i
ℏ Ĥ(t−∆t)∆te− i

ℏ Ĥ(t−2∆t)∆t × · · · × e− i
ℏ Ĥ(∆t)∆te− i

ℏ Ĥ(0)∆t |ψ⟩ . (6)

By taking the limit ∆t → 0, this description becomes exact. If it holds that
[Ĥ(t1), Ĥ(t2)] = 0 for all t1 and t2, Û(t) is brought to a simple form. In this case,
the exponents of the time evolution operators are summed together, resulting in

|ψ(t)⟩ = e− i
ℏ
∑N

k=0 Ĥ(k∆t)∆t |ψ⟩ . (7)

In the limit ∆t → 0, the sum then becomes an integral. Thus, the time evolution
operator is given by

Û(t) = e− i
ℏ

∫ t

0 Ĥ(t′)dt′
. (8)

In general, if [Ĥ(t1), Ĥ(t2)] = 0 does not hold, we write Û(t) symbolically as

Û(t) = T̂ e− i
ℏ

∫ t

0 Ĥ(t′)dt′
, (9)

where T̂ is referred to as the time ordering operator [15].
In the case where Ĥ varies with time very slowly, the time evolution can be

understood with the adiabatic theorem. It states that if one changes the Hamiltonian,
and thus the eigenstates, of a system continuously and slowly enough, a state
vector starting as an eigenstate approximately follows the eigenstate as it changes.
Specifically, given an eigenstate |ϕ(t)⟩ of the time-dependent Hamiltonian Ĥ(t), if a
state |Ψ(t)⟩ at t = 0 is |Ψ(0)⟩ = |ϕ(0)⟩, its time evolution is given by [15]

|Ψ(t)⟩ = e− i
ℏ

∫ t

0 E(t′)dt′
e−iγ(t) |ϕ(t)⟩ , (10)

where γ(t) is the geometric phase

γ(t) = i
∫ t

0
⟨ϕ(t′)| ∂

∂t′
|ϕ(t′)⟩ dt′. (11)

If at the end of the time evolution the Hamiltonian returns to its original form, γ is
also called the Berry phase.
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2.1.3 Interaction picture

Everything that has been presented above has been in the so-called Schrödinger
picture of quantum mechanics. Here, in the absence of explicit time dependencies on
operators, the operators stay constant while the state vectors evolve in time. It is
often useful to describe the system in the interaction picture, or equivalently in a
rotating frame, where both the operators and state vectors carry some of the time
dependence. For the interaction picture, we begin by first separating the Hamiltonian
operator in the Schrödinger picture ĤS into two parts, ĤS,0 and ĤS,I as

ĤS = ĤS,0 + ĤS,I. (12)

The state |ψI⟩ and operators ÂI in the interaction picture are related to those in the
Schrödinger picture by the relations

|ψI(t)⟩ = e
i
ℏ ĤS,0t |ψ(t)⟩ (13)

ÂI = e
i
ℏ ĤS,0tÂe− i

ℏ ĤS,0t. (14)

Inserting (13) into the Schrödinger equation (4), we obtain

iℏ
∂

∂t
(e− i

ℏ ĤS,0t |ψI(t)⟩) = ĤSe
− i

ℏ ĤS,0t |ψI(t)⟩ (15)

ĤS,0e
− i

ℏ ĤS,0t |ψI(t)⟩ + e− i
ℏ ĤS,0t ∂

∂t
|ψI(t)⟩ = (ĤS,0 + ĤS,I)e− i

ℏ ĤS,0t |ψI(t)⟩ (16)
∂

∂t
|ψI(t)⟩ = e

i
ℏ ĤS,0tĤS,Ie

− i
ℏ ĤS,0t |ψI(t)⟩ (17)

∂

∂t
|ψI(t)⟩ = ĤI |ψI(t)⟩ , (18)

where the interaction Hamiltonian ĤI was defined. Thus, the states in the interaction
picture follow the Schrödinger equation with the Hamiltonian operator ĤI. Depending
on the system and the chosen ĤS,0, it may be more convenient to solve Eq. (18) than
the original Schödinger equation.

2.2 Quantum Computing
A central concept in quantum computing is the qubit, a quantum mechanical system
with a two-dimensional Hilbert space H [1]. Two orthogonal states in the space are
chosen as the computational basis states, |0⟩ and |1⟩, which are in practice usually
also the eigenstates of the Hamiltonian. In general, a state of the system is described
as a linear combination of these states. It is conventional to represent the state as a
column vector where the coefficients of states |0⟩ and |1⟩ are the coefficients of the
vector

|ψ⟩ = a |0⟩ + b |1⟩ =∧
[
a
b

]
, (19)
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where =∧ denotes a representation in the computational basis. Operators are repre-
sented as matrices in this basis as[1]

Â =∧
[
⟨0| Â |0⟩ ⟨0| Â |1⟩
⟨1| Â |0⟩ ⟨1| Â |1⟩

]
. (20)

To represent the Hilbert space of two qubits, one then takes the tensor product of the
Hilbert spaces of the individual qubits, H1 ⊗H2 [1]. A basis for this space is the set of
tensor product combinations of the individual basis vectors, {|0⟩⊗|0⟩ , |0⟩⊗|1⟩ , |1⟩⊗
|0⟩, and |1⟩ ⊗ |1⟩}, which we write in short as {|00⟩ , |01⟩ , |10⟩ , |11⟩}. States in the
four-dimensional space are represented by column vectors with four components as

|ψ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩ =∧

⎡⎢⎢⎢⎣
a
b
c
d

⎤⎥⎥⎥⎦ . (21)

Here, operators are represented by 4×4 matrices. In general, a Hilbert space of n
qubits is the tensor product of all single-qubit Hilbert spaces.

The main idea in quantum computing is to design and implement a time evolu-
tion operator acting on many-qubit states so that it encodes some computational
process. This evolution is usually constructed by externally imposing one and two
qubit interactions [1]. The resulting operations are called single- or two-qubit logic
gates. For instance, let the Hamiltonian operator of a single-qubit system in the
computational basis be

Ĥ =∧
[
0 0
0 E

]
. (22)

Consequently, the time evolution operator is given by

Û(t) = e− i
ℏ Ĥt =∧

[
1 0
0 e− i

ℏEt

]
, (23)

which produces a phase shift gate with phase ϕ = −Et/ℏ for a given duration of the
interaction t. The iSWAP gate is an important two-qubit gate for this thesis. It is
represented by

iSWAP =

⎡⎢⎢⎢⎣
1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎤⎥⎥⎥⎦ , (24)

which is a sufficient two-qubit gate for universal quantum computing, that is, any
possible temporal evolution of a many-qubit system may be decomposed into a
number of iSWAP gates and single-qubit gates [14].

In practise, qubits may not be true two-state systems, but instead have eigenstates
|0⟩ , |1⟩ , |2⟩ , ... with increasing eigenenergies E0, E1, E2, . . . . The anharmonicity is a
key property of the system in this situation. It is defined to be the angular frequency
corresponding to the difference between the two lowest adjacent energy spacings

α = (E2 − E1)/ℏ − (E1 − E0)/ℏ. (25)
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A nonzero anharmonicity is typically necessary for the system to work as a qubit,
since otherwise an addition of energy that excites the state |0⟩ to |1⟩ could also excite
the state |1⟩ to the non-computational state |2⟩ [16]. An anharmonicity large enough
guarantees that system is in practice never excited to the high-energy states outside
the computational space.

2.3 Superconducting qubits
This section gives a short review to superconducting circuits for the implementation
of superconducting qubits, and in particular the transmon qubit. We begin with
the introduction of a pivotal component in superconducting circuits, the Josephson
junction, and proceed with the quantization of the Cooper pair box circuit. In the
end, the transmon qubit is discussed.

2.3.1 Josephson junction

The Josephson junction is a central component in superconducting quantum com-
puting. It consists of two superconductors separated by a non-superconducting part,
through which electric current flows by tunneling of Cooper pairs between the two
superconductors. The difference in the superconducting phase parameter across the
junction φ obeys the equations [16]

U(t) = ℏ
2eφ̇(t) (26)

I(t) = I0 sin[φ(t)]. (27)

where U(t) and I(t) are the voltage and current across the junction. Note that φ in
Eq. (26) behaves similarly as magnetic flux in a normal inductor coil according to
Lenz’s law

U(t) = Φ̇(t) = Lİ(t). (28)
where the U(t) is defined to be difference in the electric potential in the direction
where it opposes the change in current. In this sense, the Josephson junction can
simply be considered as a nonlinear inductor, with the nonlinearity arising from Eq.
(27). The energy stored in a Josephson junction is calculated from the power flowing
through it by

E =
∫ t

0
P (t′)dt′ =

∫ t

0
U(t′)I(t′)dt′ =

∫ t

0

ℏ
2eφ̇(t′)I0 sin(φ(t′))dt′ (29)

= ℏI0

2e

∫ φ(t)

0
sinφ′dφ′ = EJ[1 − cosφ(t)]. (30)

where the Josephson energy EJ = ℏI0
2e

has been defined.

2.3.2 Cooper pair box

The Cooper pair box circuit, referred to as the charge qubit, can be modelled as
a Josephson junction combined to a power source with voltage Ug and a capacitor
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Ug

Cg, Qg

CJ, QJ

φ

Figure 1: Circuit diagram of a Cooper pair box. The cross-shaped component is the
Josephson junction and the section of the circuit colored blue is a superconducting island,
to which the Cooper pairs tunnel through the junction.

with capacitance Cg, as shown in Fig. 1. These are also called the gate capacitance
and gate voltage. The Josephson junction has also some capacitance of its own,
CJ, modelled as an external capacitance in parallel with the junction in the figure.
To begin the quantization of the circuit, we first note that there are two types of
energy stored in the system, that related to the voltages over the capacitors and
the energy related to φ, as in the Josephson junction. We define φ as a generalized
position coordinate in Lagrangian mechanics. Thus the energy related to the voltages
corresponds to the kinetic energies of the system and energy related to φ corresponds
to the potential energy. The Lagrangian of the circuit is given by

L = T − V (31)

T = 1
2CJU

2
J + 1

2Cg(UJ − Ug)2 = 1
2CJ

(
ℏ
2eφ̇

)2

+ 1
2Cg(

ℏ
2eφ̇

2 − Ug)2 (32)

V = EJ(1 − cosφ). (33)

Next the generalized momentum p is obtained from

p = ∂L

∂φ̇
=
(
ℏ
2e

)2

(CJ + Cg)φ̇− CgUg
ℏ
2e. (34)

Applying the Legendre transformation in Eq. (3) provides us the Hamiltonian of the
circuit as

H = pφ− L =

(
p+ CgUg

ℏ
2e

)2

2( ℏ
2e

)2(CJ + Cg)
+ EJ(1 − cosφ), (35)

where a constant factor −1
2CgU

2
g has been dismissed. The quantization of the circuit

is finalized by replacing the canonical position and momentum, φ and p, by the
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corresponding operators, φ̂ and p̂ and introducing the canonical commutation relation
[φ̂, p̂] = iℏ. It is also useful to define a quantity ng = − Qg

−2e
, corresponding to the

number of Cooper pairs at the input capacitor caused by the input voltage, and the
operator n̂ = − p̂

ℏ . Thus the Hamiltonian operator assumes the form

Ĥ =

(
p̂+ CgUg

ℏ
2e

)2

2( ℏ
2e

)2(CJ + Cg)
+ EJ(1 − cos φ̂) (36)

= 4e2

2(CJ + Cg)
(n̂− ng)2 + EJ(1 − cos φ̂) (37)

= 4EC(n̂− ng)2 + EJ(1 − cos φ̂), (38)

where on the last line the charging energy EC = e2

2(CJ+Cg) has been defined. From the
canonical commutation relation [φ̂, p̂] = iℏ it follows that [n̂, φ̂] = i.

The meaning of the operator n̂ may be understood by substituting Eq. (26) in
the place of φ̇ in Eq. (34): we obtain p = −ℏ

[
CJUJ
−2e

+ Cg(UJ−Ug)
−2e

]
= −ℏ

[
QJ
−2e

+ Qg
−2e

]
,

where QJ and Qg are the charges of the two capacitors. This is recognized as the
number of Cooper pairs on the superconducting island in Fig. 1 times a constant
−ℏ. Thus the eigenstates of n̂ correspond to the number of Cooper pairs on the
island. The quantization of charge on the superconducting island is the main idea
behind the charge qubit, since the individual charge states can accurately become the
eigenstates of the system in the limit EC ≫ EJ. The nonlinearity of the Josephson
junction causes a nonzero anharmonicity [12], allowing the system to work as a qubit.
The two lowest eigenstates and -energies can be controlled by changing ng, which
can be used for the implementation of logic gate operations [6].

2.3.3 Transmon qubit

In a transmon, an additional capacitor with capacitance Cp is added in parallel with
the Josephson junction. The addition of the capacitor does not change the derivation
of the Hamiltonian, since the additional capacitance is captured by the capacitance
of the junction. The resulting Hamiltonian is identical to that in Eq. (38), except
that EC = e2

2(CJ+Cp+Cg) = e2

2CΣ
. Thus the the effect of the additional capacitance is

to lower the charging energy. To be more specific, the ratio EJ/EC is of the order
of ∼102 [10], in contrast to the low EJ/EC ≈ 10−2 ratio of charge qubits [12]. The
main advantage of the transmon design is that its energy is much less sensitive to
voltage of charge drifts in the circuit than that of the charge qubit. The drawback of
the high EJ/EC ratio is that the anharmonicity is weakened. However, this is not
a major issue, since increasing the ratio EJ/EC decreases the sensitivity to charge
drifts exponentially, whereas the anharmonicity weakens only algebraically. Thus
the circuit still effectively works as a qubit [10].

Returning to the simple Hamiltonian in Eq. (38), in the limit EJ/EC ≫ 1 we can
neglect the periodic boundary condition of φ and φ+ 2π being equal and expand
the cosine in the Hamiltonian with a Taylor series cos φ̂ ≈ 1 − 1

2 φ̂
2 + 1

24 φ̂
4 [10].

Furthermore, due to the insensitivity to gate charge, we may set ng = 0 [10]. Thus
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we arrive at a harmonic-oscillator Hamiltonian with a fourth-order anharmonic
perturbation

Ĥ ≈ 4ECn̂
2 + EJ

2 φ̂2 − EJ

24 φ̂
4. (39)

The harmonic part is brought to a different form using the annihilation and creation
operators

4ECn̂
2 + EJ

2 φ̂2 =
√

8ECEJ(b̂†b̂+ 1
2), (40)

where the operators b̂ and b̂† are defined as

b̂ = −2
(
EC

8EJ

) 1
4
n̂+ i

1√
2

(
EJ

8EC

) 1
4
φ̂, (41)

b̂† = 2
(
EC

8EJ

) 1
4
n̂+ i

1√
2

(
EJ

8EC

) 1
4
φ̂. (42)

By noticing that φ̂ = − 1√
2

(
8EC
EJ

) 1
4 (b̂+ b̂†), the Hamiltonian in Eq. (39) assumes the

form
Ĥ =

√
8ECEJb̂

†b̂− EC

12 (b̂+ b̂†)4, (43)

where the constant energy term has been neglected. Transforming to the interaction
picture with H0 =

√
8ECEJb̂

†b̂ = ω0b̂
†b̂, the annihilation operator becomes

b̂I → eiω0b̂†b̂tb̂e−iω0b̂†b̂t = eiω0b̂†b̂tb̂
∞∑

k=0

(−i)kωk
0(b̂†b̂)k

k! = eiω0b̂†b̂t
∞∑

k=0

(−i)kωk
0 b̂(b̂†b̂)k

k!

= eiω0b̂†b̂t
∞∑

k=0

(−i)kωk
0(b̂b̂†)kb̂

k! = eiω0b̂†b̂t
∞∑

k=0

(−i)kωk
0(b̂†b̂+ 1)k

k! b̂

= eiω0b̂†b̂te−iω0(b̂†b̂+1)tb̂ = e−iω0tb̂, (44)

where we used the commutation relation [b̂, b̂†] = 1. Likewise, the operator b̂†
I = eiωtb̂†.

The resulting interaction Hamiltonian is given by

ĤI = −EC

12 (e−iω0tb̂+ eiω0tb̂†)4. (45)

When expanding the above expression, one obtains sixteen different terms. The
ones that have time dependence are those which have an uneven number of creation
and annihilation operators, i.e., e−2iω0tb̂b̂b̂†b̂. In the interaction picture, these terms
are rotating with a very high frequency which causes their effects to average out on
long timescales, allowing us to ignore them. This is also called the rotating-wave
approximation [17]. Transforming back to the Schrödinger picture, six anharmonic
terms of the sixteen that we started with are left in the Hamiltonian

Ĥ =
√

8ECEJb̂
†b̂− EC

12 (b̂†b̂†b̂b̂+ b̂†b̂b̂†b̂+ b̂†b̂b̂b̂† + b̂b̂†b̂†b̂+ b̂b̂†b̂b̂† + b̂b̂b̂†b̂†). (46)
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In appendix A, we show that the sum of the six terms is given in a more compact
form as −EC

4 − ECb̂
†b̂− EC

2 b̂
†b̂†b̂b̂. Neglecting the constant term, the Hamiltonian is

brought in to the simple form

Ĥ = (
√

8ECEJ − EC)b̂†b̂− EC

2 b̂†b̂†b̂b̂ (47)

= ℏωb̂†b̂+ ℏα
2 b̂†b̂†b̂b̂. (48)

where the qubit frequency ω and anharmonicity α have also been defined.
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3 Methods
In this section, we describe the method used to implement and characterize two-qubit
gates.

3.1 Tunable coupling scheme
The system simulated in this work is based on Ref. [13], where the authors propose
the use of an auxiliary qubit acting as a tunable coupler between the two logical
qubits for implementing two-qubit gate operations. Figure 2 illustrates the system.
The logical qubits effectively interact in two ways, by direct coupling between the
qubits, and by an effective coupling through the auxiliary qubit, also referred to as
the virtual exchange interaction. If the system parameters are set correctly, these two
interactions cancel each other at an appropriate auxiliary qubit frequency, effectively
decoupling the logical qubits. The advantage of the scheme is that the direct coupling
is explicitly taken into account, and it is excluded from the sources of error. When
the logical qubits are brought to resonance, an iSWAP gate can be carried out by
tuning the frequency of the coupler.

Qubit 1 Coupler Qubit 2

g12

g2g1

Figure 2: Schematic picture of the coupling scheme between Qubit 1 and Qubit 2. Here,
g1,g2, and g12 are the coupling constants between the qubits.

Consider an ideal system consisting of three two-level systems with couplings
between all of them, with a Hamiltonian given by

Ĥ/ℏ =
∑

j=1,2

1
2ωjσ̂

z
j + 1

2ωcσ̂
z
c + g12(σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2 ) +

∑
j=1,2

gj(σ̂+
j σ̂

−
c + σ̂−

j σ̂
+
c ), (49)

where ω1, ωc, and ω2 denote the frequencies of the first logical qubit, the auxiliary
coupler qubit, and the second logical qubit, respectively, whereas g1 and g2 are the
coupling constants of Qubits 1 and 2 with the coupler and g12 is the direct coupling
constant. The operators σ̂z

k, σ̂
+
k , and σ̂−

k , k ∈ {1, c, 2} are the Pauli-Z, raising, and
lowering operators of each qubit, respectively. The full tensor product form of the
operators has not been explicitly written down, such that for example the σ̂c

z operator
corresponds to the operator 1 ⊗ σ̂z ⊗ 1 and σ̂+

1 corresponds to σ̂+ ⊗ 1 ⊗ 1. The



12

states of the coupler are approximately decoupled from the other two qubits using
the so-called Schrieffer–Wolff transformation,

H̃ = eŜĤeŜ†
, (50)

Ŝ =
∑

j=1,2

gj

∆j

(σ̂+
j σ̂

−
c − σ̂−

j σ̂
+
c ). (51)

The Hamiltonian concerning the logical qubits transforms as

H̃/ℏ =
∑

j=1,2

1
2 ω̃j(ωc)σ̂z

j +
(
g1g2

∆(ωc)
+ g12

)
(σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2 )

=
∑

j=1,2

1
2 ω̃j(ωc)σ̂z

j + g̃(ωc)(σ̂+
1 σ̂

−
2 + σ̂−

1 σ̂
+
2 ), (52)

where it has been defined that 1
∆(ωc) =

(
1

∆1(ωc) + 1
∆2(ωc)

)
/2, ∆j(ωc) = ωj − ωc and

ω̃j(ωc) = ωj + g2
j

∆j(ωc) . All of the operators in Eq. (52) are transformed, even
though they are denoted by the same symbols as before. The approximation holds if
gj ≪ |∆j|, that is, the coupling to the auxiliary qubit is dispersive. The description
of the interaction between the two qubits is thus simplified into a direct effective
coupling g̃. Assuming negative detunings from the coupler, ∆j < 0, the first term
inside the expression for g̃ is negative, implying that it is possible to find a frequency
ωoff

c such that g̃(ωoff
c ) = 0, thus fully decoupling the two qubits. Tuning ωc away from

ωoff
c turns on the interaction between the logical qubits, allowing the execution of

logic gates.
If we choose ω1 = ω2, the iSWAP gate can be carried out. First we move into

a frame rotating with qubit frequencies in the decoupled state, so that Ĥ0/ℏ =∑
j=1,2

1
2 ω̃(ωoff

c )σ̂z
j and ĤI(t)/ℏ = ∑

j=1,2
1
2 [ω̃(t) − ω̃(ωoff

c )]σ̂z
j + g̃(t)(σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2 ),

where the possible time dependency of ωc has been taken to account by the definitions
ω̃(t) = ω̃[ωc(t)] and g̃(t) = g̃[ωc(t)]. In this frame all state vectors stay constant
with respect to time if ωc = ωoff

c . It can be shown that [ĤI(t1), ĤI(t2)] = 0 for every
t1, t2, and thus the time evolution operator of the system is Û(t) = e− i

ℏ

∫ t

0 ĤI(t′)dt′

which we write in the basis formed of the combinations of the individual qubit
eigenstates,{|00⟩ , |01⟩ , |10⟩ , |11⟩}, where |0⟩ is the ground state of an uncoupled
qubit, as

Û(t) =∧

⎡⎢⎢⎢⎣
e

i
∫ t

0
[ω̃(t′)−ω̃(ωoff

c )]dt′
0 0 0

0 cos[
∫ t

0 g̃(t′)dt′] −i sin[
∫ t

0 g̃(t′)dt′] 0

0 −i sin[
∫ t

0 g̃(t′)dt′] cos[
∫ t

0 g̃(t′)dt′] 0

0 0 0 e
−i
∫ t

0
[ω̃(t′)−ω̃(ωoff

c )]dt′

⎤⎥⎥⎥⎦ . (53)

We observe that if
∫ t

0 g̃[ωc(t′)]dt′ = −π/2, an iSWAP gate is introduced apart
from the opposite phase factors on the states |00⟩ and |11⟩. The complete iSWAP
modulo a global phase is realized by applying phase shift gates with an appropriate
phase ϕ =

∫ t
0 ω̃(t′) − ω̃(ωoff

c )dt′ on both of the qubits separately, resulting in the
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transformation

[
1 0
0 eiϕ

]
⊗
[
1 0
0 eiϕ

]
= eiϕ

⎡⎢⎢⎢⎣
e−iϕ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eiϕ

⎤⎥⎥⎥⎦ . (54)

A useful, alternative approach is to consider the symmetric and antisymmetric
eigenstates |s⟩ = ((|01⟩ + |10⟩)/

√
2 and |a⟩ = (|01⟩ − |10⟩)/

√
2 with eigenenergies

Es/ℏ = g̃ and Ea/ℏ = −g̃, respectively. The temporal evolution of an arbitrary
combination of states |01⟩ and |10⟩ with constant ω̃ and g̃ is given by

Û(t)(a |01⟩ + b |10⟩) = a(e−ig̃t |s⟩ + eig̃t |a⟩)/
√

2 + b(e−ig̃t |s⟩ − eig̃t |a⟩)/
√

2 (55)
= |01⟩

[
(e−ig̃t + eig̃t)a+ (e−ig̃t − eig̃t)b

]
/2

+ |10⟩
[
(e−ig̃t − eig̃t)a+ (eig̃t + e−ig̃t)b

]
/2 (56)

= |01⟩ [a cos(g̃t) − bi sin(g̃t)] + |01⟩ [−ai sin(g̃t) + b cos(g̃t)] , (57)

which again produces the iSWAP operation for
∫ t

0 g̃[ωc(t′)]dt′ = g̃t = −π/2. Thus,
the swapping is mediated by the two eigenstates |s⟩ and |a⟩, with the interaction
strength connected to their eigenenergies by g̃ = (Es − Ea)/(2ℏ).

3.2 Simulated system
As an implementation of the coupling scheme presented in Sec. 3.1, we consider
a system of three flux-tunable transmon qubits capacitively coupled to each other.
The circuit diagram of the system and the relevant definitions are given in Fig.
3. Single Josephson junctions have been replaced by two parallel junctions in the
transmons. As magnetic flux is applied through the thus formed loops, the resulting
components behave essentially as single Josephson junctions with magnetic-flux
tunable Josephson energies, making the resonance frequencies of the qubits tunable
as well. The circuit is quantized by choosing φλ, λ ∈ {1, c, 2} as the generalized
coordinates and applying identical steps to those used in deriving the transmon
Hamiltonian in Sec. 2.3, resulting in the Hamiltonian operator

Ĥ = Ĥ1 + Ĥc + Ĥ2 + Ĥ1c + Ĥ2c + Ĥ12, (58)

Ĥλ/ℏ = ωλb̂
†
λb̂λ + αλ

2 b̂†
λb̂

†
λb̂λb̂λ, λ ∈ {1, c, 2}, (59)

Ĥjc/ℏ = gj(b̂†
j b̂c + b̂j b̂

†
c − b̂†

j b̂
†
c − b̂j b̂c), j ∈ {1, 2}, (60)

Ĥ12/ℏ = g12(b̂†
1b̂2 + b̂1b̂

†
2), (61)

where b̂†
λ and b̂λ are the creation and annihilation operators for qubit λ. The full

tensor product forms have been not been explicitly expressed, and for example
b̂2 = 1 ⊗ 1 ⊗ b̂ and b̂†

c = 1 ⊗ b̂† ⊗ 1. In the simulations, Ĥ was cut off at five energy
levels per qubit so that the simulated operator was in practise a 125×125 matrix.
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φcφ1 φ2

EJ1 EJ2C1 Cc C2EJc

C2cC1c

C12

Figure 3: Simulated system of three capacitively coupled transmon qubits. Differently
colored regions show the different superconducting islands. The auxiliary qubit is in the
center and the logical qubits are on the sides.

The angular frequencies ωλ, anharmonicities αλ, and the coupling constants gj and
g12 are given by

ωλ = (
√

8EJλECλ − ECλ)/ℏ, (62)
αλ = −ECλ/ℏ, (63)

gj = 1
2

Cjc√
CjCcℏ

√
ωjωc, (64)

g12 = 1
2(1 + η) C12√

C1C2ℏ
√
ω1ω2, (65)

where η = C1cC2c
C12Cc

and ECλ = e2

2Cλ
. The constants have been renormalized by assuming

that C12 ≪ Cjc ≪ Cλ where j, λ ∈ {1, 2}. In an experimental realization, this
does not pose any problems since the required parameters are obtained by direct
measurements rather than from Eqs. (62)–(65). In this thesis, the basis states of the
simulation are consistently ordered as Qubit 1, the coupler, Qubit 2. For example,
|001⟩ = |0⟩ ⊗ |0⟩ ⊗ |1⟩ denotes the state where the Qubit 1 and the coupler are in the
ground state and Qubit 2 is in the excited state, with |0⟩ and |1⟩ being the ground
and excited state for an uncoupled qubit. As in the theoretical model presented in
Sec. 3.1, the Hamiltonian is approximately transformed such that the auxiliary qubit
is decoupled from Qubits 1 and 2 using a Schrieffer-Wolff transformation presented in
Eq. (50) with Ŝ = ∑

j=1,2

[
gj

∆j
(b̂†

j b̂c − b̂j b̂
†
c) − gj

Σj
(b̂†

j b̂
†
c − b̂j b̂c)

]
. Here ∆j(ωc) = ωj − ωc

and Σj(ωc) = ωj + ωc. This results in a Hamiltonian corresponding to the one in
Eq. (52), with an effective interaction strength g̃ between the qubits

H̃/ℏ =
∑

j=1,2

(
ω̃j b̂

†
j b̂j + α̃j

2 b̂
†
j b̂

†
j b̂j b̂j

)
+ g̃(b̂†

1b̂2 + b̂1b̂
†
2). (66)
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The values of g̃, ω̃j and α̃j are given by

g̃(ωc) ≈ 1
2ℏ

(
ωc

2∆(ωc)
η − ωc

2Σ(ωc)
η + η + 1

)
C12

C1C2

√
ω1ω2, (67)

ω̃j(ωc) ≈ ωj + g2
1
ℏ

(
1

∆j(ωc)
− 1

Σj(ωc)

)
, (68)

α̃j ≈ αj, (69)

where 1
∆(ωc) = ( 1

∆1(ωc) + 1
∆2(ωc))/2 and 1

Σ(ωc) = ( 1
Σ1(ωc) + 1

Σ2(ωc))/2. In addition to
assuming that gj ≪ |∆j|, we also assume that the anharmonicities αj are small in
using the transformation. If we consider only the first two energy levels of each
qubit, that is, approximate them to be actual two-state systems, Eq. (66) becomes
essentially identical to Eq. (52). Thus we expect the results of Sec. 3.1 to hold to
some degree also for the non-ideal system, and in the case ω = ω1 = ω2 an iSWAP
gate should be able implementable.

3.3 Numerical simulation of the system
3.3.1 Computational states and the effective interaction strength

A number of practical concerns should be addressed for the simulations. The first is the
problem of which states to define as the computational basis states corresponding to
the ideal two-qubit states |00⟩ , |01⟩ , |10⟩, and |11⟩. The used states are the eigenstates
of the entire system in the decoupled state ωc = ωoff

c that match closely with the
tensor product combinations of the uncoupled qubit eigenstates, |000⟩ , |001⟩ , |100⟩,
and |101⟩. These states are labeled as |̃000⟩, |̃001⟩, |̃100⟩, and |̃101⟩. According to
the two-level theory of Sec. 3.1, these matching eigenstates should exist as in the
case that ωc = ωoff

c , |00⟩ , |01⟩ , |10⟩ and |11⟩ are precisely eigenstates of the system.
Other eigenstates with ωc at the decoupling frequency that correspond closely to
some state formed of the uncoupled qubit eigenstates are referred to with the same
convention as the computational states, so that the state |̃010⟩ corresponds to an
eigenstate that is close, but not equal to, |010⟩ = |0⟩ ⊗ |1⟩ ⊗ |0⟩.

Instead of using the analytical formula for the effective interaction strength
in Eq. (67), we use a more accurate method utilizing the numerically calculated
eigenenergies of the system. We note that the swapping operation in the theory
of Sec. 3.1 is mediated by the symmetric and antisymmetric combinations of the
computational states |01⟩ and |10⟩. This fact is translated to the simulated system
by noting that when ωc ≈ ωoff

c , there should exist two eigenstates close to states
|̃001⟩ + |̃100⟩ and |̃001⟩ − |̃100⟩ with eigenenergies Es and Ea. Thus, as in Sec. 3.1,
an effective interaction strength g̃e is calculated as

g̃e = (Es − Ea)/(2ℏ). (70)

By finding the zero of g̃e with respect to ωc, the decoupling frequency ωoff
c is found

and consequently the computational states |̃000⟩, |̃001⟩, |̃100⟩, and |̃101⟩ are defined
as the eigenstates at ωc = ωoff

c .
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When calculating an optimal pulse shape using g̃e, its interpretation is slightly
different for non-adiabatic and adiabatic pulse shapes. In the case of a non-adiabatic
pulse, for instance a square pulse where ωc is tuned instantaneously away from ωoff

c
until the end of the pulse, the temporal evolution is governed by the projection of the
starting state to the new eigenstates of the system. At small deviations away from
ωoff

c , however, there exist eigenstates close to |̃001⟩ + |̃100⟩ and |̃001⟩ − |̃100⟩ and the
evolution is approximately the simple swapping mediated by these eigenstates. In
the case of a pulse causing an adiabatic change in the system it only matters that
the eigenstates at the end of the pulse are close to the symmetric and antisymmetric
combinations of |̃001⟩ and |̃100⟩. In both cases, however, the condition

∫ T
0 g̃e(t)dt =

−π/2 results in the optimal swapping operation. This is discussed in more detail in
Appendix B.

3.3.2 Used rotating frame

We carry out the simulations in a rotating frame where the states |̃001⟩ and |̃100⟩ are
time-independent. Specifically, the bare Hamiltonian is chosen as Ĥ0 = E|̃001⟩(b̂

†
1b̂1 +

b̂†
cb̂c + b̂†

2b̂2), where E|̃001⟩ is the eigenenergy of states |̃001⟩ and |̃100⟩. The simulated
interaction Hamiltonian is given by

ĤI = Ĥ1,I + Ĥc,I + Ĥ2,I + Ĥ1c,I + Ĥ2c,I + Ĥ12,I (71)

Ĥλ,I/ℏ = (ωλ − E|̃001⟩)b̂
†
λb̂λ + αλ

2 b̂†
λb̂

†
λb̂λb̂λ, λ ∈ {1, c, 2} (72)

Ĥjc,I/ℏ = gj(b̂†
j b̂c + b̂j b̂

†
c − e

2 i
ℏE

|̃001⟩
t
b̂†

j b̂
†
c − e

−2 i
ℏE

|̃001⟩
t
b̂j b̂c), j ∈ {1, 2} (73)

Ĥ12,I/ℏ = g12(b̂†
1b̂2 + b̂1b̂

†
2). (74)

Note that in general, the coupling factors g1 and g2 depend on time since they
are functions of the time-controllable parameter ωc. Also note that unlike in the
approximated ideal model presented in Sec. 3.1, even in this rotating frame, not
all computational states stay completely unchanged with respect to time since the
spacing between E|̃000⟩, E|̃001⟩ and E|̃101⟩ is not exactly even. Thus some of the
computational states in a rotating frame with Ĥ0 of a harmonic oscillator type have
to get phase-shifted even when ωc = ωoff

c .

3.3.3 Gate error

To estimate the error of a physical implementation of a logic gate we define the
fidelity as

f(|ψ1⟩ , |ψ2⟩) = | ⟨ψ1|ψ2⟩ |2, (75)
for some states |ψ1⟩ and |ψ2⟩. It can be interpreted as the overlap between the two
states. If |ψideal⟩ is the desired ideal state after a computational process starting
from some fixed input state, the error related to an actual state |ψ⟩ after the process
is then

ε = 1 − f(|ψideal⟩ , |ψ⟩) = 1 − | ⟨ψideal|ψ⟩ |2. (76)
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The error of the gate operation is quantified by calculating the average fidelity of
the resulting states from a set of 16 input states. Specifically, we choose the set
of the 16 states that correspond to all tensor product combinations of the states
|0⟩ , |1⟩ , 1√

2(|0⟩ + |1⟩) and 1√
2(|0⟩ + i |1⟩) [18].

Since the error given by the fidelity is not useful in identifying the cause of the
error, a simple scheme for comparing the errors arising from different states is used.
Let us assume that the states |1⟩ , |2⟩ , |3⟩ ... form an orthonormal basis in the Hilbert
space. The fidelity of a state |ψ⟩ compared with the ideal final state |ψideal⟩ expands
as

| ⟨ψideal|ψ⟩ |2 =
⏐⏐⏐⏐⏐

N∑
k=1

⟨ψideal|k⟩ ⟨k|ψ⟩
⏐⏐⏐⏐⏐
2

, (77)

where N is the dimension of the Hilbert space. The part of the fidelity caused by the
coefficient of |ψ⟩ along |k⟩ is then associated with the term ⟨ψideal|k⟩ ⟨k|ψ⟩. If the
gate operation was perfect, the fidelity would equal to 1 and the term associated with
the coefficient of |ψ⟩ along |k⟩ would be ⟨ψideal|k⟩ ⟨k|ψideal⟩. Thus the error related
to state |k⟩ is defined as

ϵn =
⏐⏐⏐| ⟨ψideal|k⟩ ⟨k|ψideal⟩ |2 − | ⟨ψideal|k⟩ ⟨k|ψ⟩ |2

⏐⏐⏐ , (78)

where the terms have been squared so that the magnitude of the expression matches
with the error calculated from the fidelity.

3.3.4 Correction of the phase shift on computational states

The problem of the individual qubits rotating during the iSWAP gate discussed in
Sec. 3.1 has to be also addressed. In the following sections, the errors/fidelities
are presented with the assumption that an appropriate phase shift is applied to the
qubits after the simulated interaction. In practice, since the computational states
are not simply the tensor product combinations of the uncoupled qubit eigenstates
|0⟩ and |1⟩, this is implemented by finding the fidelity-optimizing phase of states
|̃000⟩ and |̃101⟩. The exact mechanics of the phase shift gate are not considered
in this thesis. Consequently, the accuracy of such a transformation and the time
taken for it are not accounted for in the results. For slightly better results, it would
be possible to rotate each qubit by some amounts ϕ1 and ϕ2, but this would also
necessarily cause a phase shift between states |̃001⟩ and |̃100⟩ and increase the time
needed for the global optimization routine. Since the error of the gate operation
is calculated using the mean fidelity of the 16 input states, the optimization is not
actually calculated for each state fidelity, but for the mean fidelity. This is because in
an actual quantum computer the correction to the phases should be predetermined,
as it is not possible to know the input states in advance.

The simulations were carried out using a quantum mechanics simulation library
for Python, Qutip 4 [19].
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4 Results
In this section, we present the results from our numerical simulations of the iSWAP
gate using a tunable coupler and compare these results to the analytic results in Secs.
3.1 and 3.3. In Table 1 we list all of the essential parameters used in the simulation
as well as the ωoff

c solved from g̃e for these parameters. Since the parameters, in
particular the frequencies, concerning qubits 1 and 2 are chosen to be symmetric for
the iSWAP gate, they will be referred to with a common label ω = ω1 = ω2 for the
rest of this thesis.

ω1/2π ω2/2π ωoff
c /2π C1 Cc C2 C1c C2c C12

4GHz 4Ghz 5.362GHz 70fF 200fF 70fF 4fF 4fF 0.1fF

Table 1: Parameters used in the simulation and the value of the decoupling frequency ωoff
c

4.1 Qualitative behaviour of the system
Figure 4(a) shows the numerically obtained effective coupling strength g̃e as well
as its analytical counterpart from Eq. (67). With the coupler frequency close to
ωoff

c the two approaches agree well, which is not surprising since Eq. (67) assumes
that |ωc − ωoff

c | ≪ 0. With ωc approaching ω, however, the analytical result starts to
diverge from the numerically calculated value. Figures 4(b)–(d) show visualizations
of three eigenstates relevant to the swapping process as functions of studied ωc.
Two features are pointed out: Firstly, all of the eigenstates are almost entirely
inside the subspace spanned by the basis states |̃001⟩, |̃100⟩, and |̃010⟩ for all ωc.
Equivalently, any state vector inside this subspace can be formed by these three
eigenstates and the temporal evolution is determined by them. Secondly, we observe
that for ωc ≈ ωoff

c , there exist two eigenstates that are very close to the states
|̃001⟩ + |̃100⟩ and |̃001⟩ − |̃100⟩, as it should be. For ωc close to ω, however, the
purely symmetric eigenstate disappears and is in general replaced by a state of the
form a(|̃001⟩ + |̃100⟩) −

√
1 − 2a2|̃010⟩, whereas the state that is |̃010⟩ for ωc = ωoff

c

is replaced by a state b(|̃001⟩ + |̃100⟩) +
√

1 − 2b2 |̃010⟩.
Figure 5 shows an example temporal evolution of the computational states

for a square pulse. The gate duration is chosen to be 100 ns and the condition∫ T
0 g̃e(t)dt = −π/2 results in the coupler frequency ωc/2π ≈ 4.768GHz. It is observed

from Fig. 4(b) that at this coupler frequency there exists an eigenstate close to
|̃001⟩ + |̃100⟩, implying that the swapping interaction should be close to ideal. In Fig.
5, the phases of the states |̃000⟩ and |̃101⟩ have also been corrected with the method
explained in Sec. 3.3.4. Clearly, swapping takes place between the states |̃001⟩ and
|̃100⟩, while nothing except equally large phase shifts are imposed on states |̃000⟩
and |̃101⟩. Ignoring the global phase picked up during the gate operation, at least
on a qualitative level the iSWAP operation is completed successfully.
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Figure 4: (a) Effective interaction strength between Qubits 1 and 2 calculated numerically
(green line) and according to Eq. (67) (blue line) as functions of the frequency of the
auxiliary qubit. (b)–(d) Eigenstates relevant to the swapping interaction represented as the
coefficients of the projections onto the states |̃001⟩(dotted line), |̃100⟩(dash-dotted line),
and |̃010⟩(dashed line) as functions of ωc. The energies of the states are shown by the
red line. The squared sum of the three coefficients squared is at its minimum at about
0.99999993, implying that the eigenstates are almost entirely within the subspace spanned
by the states |̃001⟩, |̃001⟩ and |̃010⟩. For high ωc, the computed eigenstates correspond to
the states |̃s⟩ = |̃001⟩ + |̃100⟩, |̃a⟩ = |̃100⟩ − |̃001⟩, and |̃010⟩, for panels (b),(c), and (d),
respectively. In (b) and (d), the coefficients of |̃001⟩ and |̃100⟩ overlap everywhere.

4.2 Gate error
To obtain a more complete picture of the performance of the system, the gate error
for a range of different coupler frequencies using a square pulse and times ranging
from 0 to 100 ns is shown in Fig. 6(a). The gate error is calculated as explained in
Sec.3.3.3. We show also the best pulse durations for different ωc predicted by the
analytical g̃ and g̃e calculated from the eigenenergies as well as the lowest errors
searched from the data set. Near ωoff

c , at long gate durations, the error evolves in
time as expected, by smoothly decreasing until the swapping operation has happened
and then increasing. As ωc → ω, however, a somewhat complicated pattern appears
where the fidelity oscillates fast with several frequencies. This pattern is explained
in part with the strong coupling to the state |̃010⟩ which results in an oscillation in
the coefficients of states |̃001⟩ and |̃100⟩ with two overlapping frequencies. This is
studied in Appendix C by taking in to account the three eigenstates in Fig. 4 in
calculating the temporal evolution. Figure 6(b) presents a magnified view, where
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Figure 5: Evolution of the input state i
√

2
7 |̃000⟩ + 1√

8 |̃001⟩ +
√

3
8 |̃100⟩ +

√
3
14 |̃101⟩ for a

square pulse of ωc from ωoff
c to 2π×4.768 GHz. (a) The absolute values of the coefficients of

each computational state. (b) The complex phases of the coefficients of the computational
states. Optimal phase shift gates have been applied for all different times, showing the
evolution to the final iSWAP state smoothly. This also causes the phases corresponding
to the states |̃000⟩ and |̃101⟩ in panel (b) not to start exactly at π/2 and 0, respectively,
since the optimizer finds a state slightly closer to the ideal final state using a small phase
shift. The iSWAP gate is produced apart from a global phase shift, as the end state is
approximately eiπ/2(i

√
2
7 |̃000⟩ + i

√
3
8 |̃001⟩ + i 1√

8 |̃100⟩ +
√

3
14 |̃101⟩).

it is visible that the prediction of the numerically calculated g̃e does indeed match
better with the searched best fidelities than the one by the analytical g̃.

Since the coupling strength g̃e gives better predictions for the length of the
pulse than the analytical result of Eq. (67), it is meaningful to ask how well
exactly does the prediction match with the actual optimal fidelity for a given gate
duration. The gate errors with different pulse durations and amplitudes calculated
from

∫ T
0 g̃e(t)dt = −π/2 are shown in Fig. 7 with the minimum errors searched

from Fig. 6. Comparison of the predicted and the actual best square pulse errors
reveal that the predicted pulse error meets the searched error for some specific gate
durations, otherwise oscillating at higher values. Both of the errors decrease with
increasing gate duration as they should, but after about 60 ns the rate of the decrease
slows down. To study if the error can be further decreased by making the pulse
adiabatic, simulation results with pulse lengths and amplitudes predicted by g̃e are
also shown with two other pulse shapes. These are the sine pulse, i.e., a modulation
on the coupler frequency of the form ωc(t) = ωoff

c [1 − A sin
(

π
T
t
)
] and a sine squared

pulse, where the coupler frequency varies as ωc(t) = ωoff
c [1 −A sin2( π

T
t)]. Here, A is a

constant. At short pulse durations the sine pulse yields higher errors than the square
pulse, but approximately at 34 ns the error decreases below the best possible square
pulse and reaches a value below 10−5 at about 100 ns. In contrast to the predicted
square pulse, the fidelity increases smoothly. The sine squared pulse, on the other
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Figure 6: (a) Error of the gate operation as a function of gate duration and coupler
frequency during a square pulse. We show as indicated the optimal gate durations for
different frequencies calculated with the analytical g̃ from Eq. (67) and g̃e, as well as a curve
showing the best possible fidelity for different values of ωc searched from the simulation
results. The search is carried out left of the cut-off curve. (b) Magnification of panel (a) in
the area indicated by the rectangle.

hand, while producing better fidelities than the square pulse at long gate durations,
yields consistently higher errors than the sine pulse.

4.3 Analysis of error sources
Two questions arise: What causes the different pulse shapes to exhibit different
errors and which computational states cause the most error? Figure 8(a) shows the
evolution of the average gate error during a single gate operation for the different
control pulses. The error of the sine and sine squared pulses decrease smoothly, while
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∫ t
0 g̃e(t)dt = −π/2 as functions of the gate duration. (b)–(d) Illustrations of

the different pulse shapes, with square pulse in (b), sine pulse in (c), and sine squared in
(d).

the error of the square pulse begins to oscillate at the end of the gate operation.
The error related to the different computational states according to Eq. (78) for the
square pulse is presented in Fig. 8(b), which shows that the error is limited at the
end of the gate by high-frequency oscillations in the errors of states |̃001⟩, |̃100⟩, and
|̃101⟩. Thus altering the gate duration even slightly causes a rather large difference
in the total error of the gate, explaining the varying error of the square pulse in Fig.
7(a). These oscillations are naturally explained by the non-adiabatic change in ωc at
the start of the pulse causing unwanted excitations, which limits the performance
of the square pulse in comparison to the adiabatic pulse shapes. In Appendix D, it
is shown that the evolution of the state coefficient along |̃101⟩ is in general mostly
dictated by six different eigenstates, implying that it, like the states |̃001⟩ and |̃100⟩,
couples to non-computational states during the pulse.

Figure 8(c) shows the evolution of the different sources of error for the sine
pulse. In contrast to the square pulse, there are no high frequency oscillations in the
different errors, but instead, for example, the error related to |̃101⟩ first increases
smoothly and then starts decreasing half-way through the gate operation. This can
be understood as the component of the state vector along |̃101⟩ shifting with the
change of the eigenstate as ωc departs from ωoff

c , and then returning to the original
computational state. If the gate duration is set to be too short, however, the adiabatic
approximation breaks down since the change in the Hamiltonian has to be relatively
fast for

∫ T
0 g̃e(t)dt = −π/2 to hold. This explains the error of the sine pulse being
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larger than the optimal error of the square pulse at short gate durations in Fig. 7,
since the maximum deviation of ωc from ωoff

c is larger for the sine pulse than for the
square pulse, causing strong non-adiabatic effects.

0 20 40 60 80 100
Time (ns)

10−5

10−4

10−3

10−2

10−1

100

0 20 40 60 80 100
Time (ns)

10−11

10−9

10−7

10−5

10−3

10−1

0 20 40 60 80 100
Time (ns)

10−11

10−9

10−7

10−5

10−3

10−1

0 20 40 60 80 100
Time (ns)

10−11

G
at

e
er

ro
r

Er
ro

r
of

co
effi

ci
en

t

Er
ro

r
of

co
effi

ci
en

t
Er

ro
r

of
co

effi
ci

en
t

10−9

10−7

10−5

10−3

10−1

|̃001⟩ and |̃100⟩
|̃101⟩

|̃000⟩

Square pulse
Sine pulse
Sine2 pulse

(a) (b)

(c) (d)

Figure 8: (a) Gate error as a function of time during a gate operation for the different pulse
shapes. The gate operation finishes at 98 ns. (b)–(d) The errors related to the coefficients
of the computational states during the gate operation for the (b) square, (c) sine, and (d)
sine squared pulses. The errors linked to the coefficients of |̃001⟩ and |̃100⟩ are summed
together.

Continuing with the same logic, the sine squared pulse should, at long enough gate
durations, produce even lower errors than the sine pulse as there are no discontinuities
in the slope of the pulse and the evolution should be accurately adiabatic. This
is not, however, the case even at a gate duration of 100 ns. Figure 8(d) reveals
that we see that the main source of error in this case are the states |̃001⟩ and |̃100⟩,
with the error reaching a low value before the end of the pulse and then increasing
slightly towards the end. This is most likely because the prediction of the pulse
shape using g̃e does not work correctly for this pulse shape, and the gate operation
misses the optimal swapping interaction by a small factor. This may be explained
by the fact that the amplitude for the sine squared pulse must be larger than for the
sine pulse for any given gate duration, forcing one to adjust ωc far from ωoff

c during
the operation.
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5 Conclusions
In this thesis, the tunable-coupler system presented in Ref. [13] was simulated
and tested in its viability for implementing two-qubit gates. Using a sine pulse
on the coupler frequency results in gate errors below 10−5 at gate durations of
∼100 ns, indicating its ability in implementing high-fidelity gate operations. This
also means that the error caused by coupling to non-computational states will not
become a limiting factor soon using this system, even though the coherence times of
superconducting qubits continue to improve [12]. High fidelity gates are necessary
for the realization of a universal error-corrected quantum computer [16], and hence
the studied system may become a very relevant option for implementing two-qubit
gates in the future.

It is also clear that the shape of the pulse has a major effect when reaching low
gate errors and in particular the square pulse does not perform as well as the the
sine pulse or the sine squared pulse in reaching very low errors. This is explained by
non-adiabatic changes in the system causing coupling to non-computational states.
While better than the square pulse at gate durations of over 50 ns, the sine squared
pulse does not perform as well as the sine pulse for any of the simulated gate durations.
The difference is likely mostly caused by non-optimal pulse parameters when using
the sine squared pulse.

There are a number of ways to improve the gate fidelity even further. Optimizing
the parameters of the sine squared pulse should result in lower error than what we
obtained. Coupling to non-computational states could be reduced by adjusting the
system parameters, such as the anharmonicities of the qubits. For the best possible
fidelities using a given system, optimized pulse shaping methods such as the gradient
ascent pulse engineering algorithm (GRAPE) [20] and the chopped random basis
(CRAB) algorithm [21] could be used.
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A Simplification of the approximated transmon
Hamiltonian

The fact that sum of the six terms in Eq. (46) can be expressed as −EC
4 − ECb̂

†b̂−
EC
2 b̂

†b̂†b̂b̂ is calculated in this appendix. By using the commutation relation [b̂, b̂†] = 1,
five of the terms are transformed as

b̂†b̂b̂†b̂ = b̂†(b̂†b̂+ 1)b̂ = b̂†b̂†b̂b̂+ b̂†b̂, (A1)
b̂†b̂b̂b̂† = b̂†b̂(b̂†b̂+ 1) = b̂†b̂†b̂b̂+ b̂†b̂+ b̂†b̂ = b̂†b̂†b̂b̂+ 2b̂†b̂, (A2)
b̂b̂†b̂†b̂ = (b̂†b̂+ 1)b̂†b̂ = b̂†b̂†b̂b̂+ b̂†b̂+ b̂†b̂ = b̂†b̂†b̂b̂+ 2b̂†b̂, (A3)
b̂b̂†b̂b̂† = b̂b̂†(b̂†b̂+ 1) = b̂†b̂†b̂b̂+ 2b̂†b̂+ b̂b̂† = b̂†b̂†b̂b̂+ 3b̂†b̂+ 1, (A4)
b̂b̂b̂†b̂† = b̂(b̂†b̂+ 1)b̂† = b̂†b̂†b̂b̂+ 3b̂†b̂+ 1 + b̂b̂† = b̂†b̂†b̂b̂+ 4b̂†b̂+ 2, (A5)

where previously calculated terms have been used repeatedly in the following calcu-
lations. Summation of all of the six terms results in

b̂†b̂†b̂b̂+ b̂†b̂b̂†b̂+ b̂†b̂b̂b̂† + b̂b̂†b̂†b̂+ b̂b̂†b̂b̂† + b̂b̂b̂†b̂† = 6b̂†b̂†b̂b̂+ 12b̂†b̂+ 3. (A6)

Multiplying the sum by −EC
12 , we obtain the result used in the main text

−EC

12 (6b̂†b̂†b̂b̂+ 12b̂†b̂+ 3) = −EC

4 − ECb̂
†b̂− EC

2 b̂†b̂†b̂b̂. (A7)
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B Interpretation of the numerically calculated ef-
fective interaction strength

This appendix discusses the interpretation of the effective interaction strength g̃e
and its usage for the square pulse and for the adiabatic pulse shapes. For the
square pulse, the temporal evolution of a combination of |̃001⟩ and |̃100⟩ is calculated
by its projecting it on the eigenstates of the system during the pulse. Assuming
that during the pulse there are eigenstates close to |̃a⟩ = (|̃001⟩ − |̃100⟩)/

√
2 and

|̃s⟩ = (|̃001⟩ + |̃100⟩)/
√

2, the evolution is calculated as

Û(t)(a|̃001⟩ + b|̃100⟩) = a(e− i
ℏEst|̃s⟩ + e− i

ℏEat|̃a⟩) + b(e− i
ℏEst|̃s⟩ − e− i

ℏEat|̃a⟩) (B1)

=
[
(e− i

ℏEst + e− i
ℏEat)a+ (e− i

ℏEst − e− i
ℏEat)b

]
|̃001⟩

+ |̃100⟩
[
(e− i

ℏEst − e− i
ℏEat)a+ (e− i

ℏEst + e− i
ℏEat)b

]
|̃100⟩. (B2)

Defining Eavg = (Es+Ea)/2 and g̃e = (Es−Ea)/(2ℏ), it is noticed that Es = Eavg+ℏg̃e
and Ea = Eavg − ℏg̃e. The above expression is thus simplified to

1
2e

− i
ℏEavgt

[
(e−ig̃et + eig̃et)a+ (e−ig̃et − eig̃et)b

]
|̃001⟩

+ 1
2e

− i
ℏEavgt

[
(e−ig̃et − eig̃et)a+ (e−ig̃et + eig̃et)b

]
|̃001⟩ (B3)

= e− i
ℏEavgt

[
(a cos(g̃et) − ib sin(g̃et)) |̃001⟩ + (−ai sin(g̃et) + b cos(g̃et)) |̃100⟩

]
,

(B4)

which produces the iSWAP apart from a global phase when g̃et = −π/2.
For an adiabatic pulse, one only needs to assume that the eigenstates at the start

and end of the pulse approach |̃001⟩ + |̃100⟩ and |̃001⟩ − |̃100⟩. The time evolution
of a state starting at the antisymmetric or symmetric eigenstate is then given by

|Ψa(t)⟩ = e− i
ℏ

∫ t

0 Ea(t′)dt′
e−iγa |a[ωc(t)]⟩ , (B5)

|Ψs(t)⟩ = e− i
ℏ

∫ t

0 Es(t′)dt′
e−iγs |s[ωc(t)]⟩ . (B6)

where ωc(0) = ωoff
c and |a(ωc⟩ → |̃a⟩ and |s(ωc)⟩ → |̃s⟩ as ωc → ωoff

c . When the
coupler frequency is ωoff

c the eigenstates are degenerate. However, as ωc deviates
slightly from the decoupling frequency, the eigenstates become the states |̃a⟩ and
|̃s⟩. Given a starting state a|̃001⟩ + b|̃100⟩, at the beginning of the pulse it is non-
adiabatically projected on |̃a⟩ and |̃s⟩ and starts adiabatically evolving according
to

Û(t)(a|̃001⟩ + b|̃100⟩) = a(|Ψa(t)⟩ + |Ψs(t)⟩) + b(|Ψs(t)⟩ − |Ψa(t)⟩). (B7)

Since the parameter ωc reverses its path during the pulses, the Berry phases γa and
γs are both zero in this situation. Calculating the time evolution until the end of the
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pulse at time T where ωc = ωoff
c , we get

Û(t)(a|̃001⟩ + b|̃100⟩) = (B8)

e− i
ℏ

∫ T

0 Eavgdt

[
cos
(∫ T

0
g̃e(t)dt

)
|̃001⟩ − i sin

(∫ T

0
g̃e(t)dt

)
|̃100⟩

]
(B9)

+ e− i
ℏ

∫ T

0 Eavgdt

[
−i sin

(∫ T

0
g̃e(t)dt

)
|̃001⟩ + cos

(∫ T

0
g̃e(t)dt

)
|̃100⟩

]
(B10)

where it has again been defined that Eavg(t) = [Es(t) +Ea(t)]/2 and g̃e(t) = [Es(t) −
Ea(t)]/(2ℏ). Thus we observe that the condition

∫ T
0 g̃e(t)dt = −π/2 results in the

iSWAP gate in this case as well.
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C Error of the swapping interaction using the
square pulse

As discussed in Sec. 4.1, in general the time evolution after applying a square pulse
is not exactly the simple swapping interaction between states |̃001⟩ and |̃100⟩, but
instead the coupling to other states must be taken in to account. For instance, the
Figs. 4(b)–(d) show that to calculate the temporal evolution of states |̃001⟩ and
|̃100⟩, one must take in to account the three eigenstates of the form

|1⟩ = a(|̃001⟩ + |̃100⟩) −
√

1 − 2a2 |̃010⟩, (C1)

|2⟩ = 1√
2

(|̃001⟩ − |̃100⟩), (C2)

|3⟩ = b(|̃001⟩ + |̃100⟩) +
√

1 − 2b2|̃010⟩, , (C3)

with eigenenergies E1, E2, and E3, respectively, in ascending order. In this section,
the evolution of a state starting from |̃001⟩ is calculated. We start by noting that
the eigenstates |1⟩ and |3⟩ have to be orthonormal, ⟨1|3⟩ = 0, which results in the
identity

√
1 − 2a2

√
1 − 2b2

b = 1 − 2a2

2a , (C4)

The computational state |̃001⟩ is projected on the eigenstates with

|̃001⟩ ∝ |1⟩ +
√

1 − 2a2
√

1 − 2b2
|3⟩ +

√
2
(
a+

√
1 − 2a2

√
1 − 2b2

b

)
|2⟩ . (C5)

The time evolution is thus calculated to be

Û(t)|̃001⟩ ∝ e− i
ℏE1t |1⟩ + e− i

ℏE3t

√
1 − 2a2

√
1 − 2b2

|3⟩ + e− i
ℏE2t

√
2
(
a+

√
1 − 2a2

√
1 − 2b2

b

)
|2⟩ .

(C6)

Inserting the definitions from Eqs. (C1)–(C3), grouping terms and using the identity
(C4), we obtain

Û(t)|̃001⟩ ∝
√

1 − 2a2
(
e− i

ℏE3t − e− i
ℏE1t

)
|̃010⟩

+
[
ae− i

ℏE1t + 1 − 2a2

2a e− i
ℏE3t +

(
a+ 1 − 2a2

2a

)
e− i

ℏE2t

]
|̃001⟩

+
[
ae− i

ℏE1t + 1 − 2a2

2a e− i
ℏE3t −

(
a+ 1 − 2a2

2a

)
e− i

ℏE2t

]
|̃100⟩. (C7)

Next is is useful to define the average energies of the different eigenstates Eavg
1,2 =

E1+E2
2 , Eavg

2,3 = E2+E3
2 , Eavg

1,3 = E1+E3
2 , and the coupling strengths g1,2 = E1−E2

2ℏ , g2,3 =
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E2−E3
2ℏ , and g1,3 = E1−E3

2ℏ . Expressing E1, E2, and E3 using these definitions and
regrouping, we finally arrive at

Û(t)|̃001⟩ ∝ −
√

1 − 2a2e− i
ℏEavg

1,3 t2i sin(g1,3t)|̃010⟩

+
[
ae− i

ℏEavg
1,2 t2 cos(g1,2t) + 1 − 2a2

2a e− i
ℏEavg

2,3 t cos(g2,3t)
]

|̃001⟩

+
[
−ae− i

ℏEavg
1,2 t2i sin(g1,2t) + 1 − 2a2

2a e− i
ℏEavg

2,3 ti sin(g2,3t)
]

|̃100⟩. (C8)

Thus, an extra modulation with frequency g2,3 is added on top of the swapping
interaction. An identical calculation is straightforward for the state |̃100⟩ as well.
We observe Fig. 4(b)–(d) that if ωc ≈ ω, the amplitudes of the two oscillations are of
similar size, and hence the time evolution can not be considered as a simple swapping
operation. On the other hand, if ωc → ωoff

c , a → 1√
2 and the expression simplifies to

the simple swapping evolution.
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D The coupling of state ˜|101⟩ to non-computational
states

Figure D1 visualizes the eigenstates that cause the coupling between |̃101⟩ and non-
computational states. As the sum of the squared absolute values of the coefficients
along states |̃101⟩, |̃110⟩, |̃011⟩, |̃020⟩, |̃200⟩, |̃002⟩ equals close to 1 for all ωc, the
eigenstates are almost entirely within the subspace spanned by these states. This
implies that the temporal evolution of an initial state |̃101⟩ for a non-adiabatic pulse
is dominated by the six shown eigenstates.
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Figure D1: (a)–(f) Coefficients of the eigenstates relevant to the time evolution of state
|̃101⟩ in the indicated basis as functions of the coupler frequency. Panel (c) shows the
eigenstates that are close to |̃101⟩ for high ωc. The sum of the coefficients squared on all of
the eigenstates reaches a value of 0.99999986 at its lowest, implying that the eigenstates are
almost entirely within the subspace spanned by |̃101⟩, |̃110⟩, |̃011⟩, |̃020⟩, |̃200⟩, and |̃002⟩,
and vice versa.


	Abstract 
	Preface
	Contents
	1 Introduction
	2 Theoretical background
	2.1 Relevant concepts in quantum mechanics
	2.1.1 Quantization of a physical system
	2.1.2 Methods for solving the Schrödinger equation
	2.1.3 Interaction picture

	2.2 Quantum Computing
	2.3 Superconducting qubits
	2.3.1 Josephson junction
	2.3.2 Cooper pair box
	2.3.3 Transmon qubit


	3 Methods
	3.1 Tunable coupling scheme
	3.2 Simulated system
	3.3 Numerical simulation of the system
	3.3.1 Computational states and the effective interaction strength
	3.3.2 Used rotating frame
	3.3.3 Gate error
	3.3.4 Correction of the phase shift on computational states


	4 Results
	4.1 Qualitative behaviour of the system
	4.2 Gate error
	4.3 Analysis of error sources

	5 Conclusions
	A Simplification of the approximated transmon Hamiltonian
	B Interpretation of the numerically calculated effective interaction strength
	C Error of the swapping interaction using the square pulse
	D The coupling of state 101"0365101 to non-computational states

