
Modeling the occupancy of the Eurasian Blue Tit

in Finland

Bayesian Data Analysis course project

Severi Rissanen

November 2020

Contents

1 Introduction 2

2 The data set and model 2
2.1 Description . 2
2.2 Preprocessing . 3
2.3 The model . 4

3 Results 6
3.1 Setup and convergence diagnostics 6
3.2 Posterior predictive checking and model selection 6
3.3 Prior sensitivity checking . 8
3.4 Analysis of results . 10

4 Discussion 11
4.1 Model issues and improvements 11
4.2 Conclusions . 12

A Stan code for model 1 14

B Stan code for model 2 15

C Stan code for model 3 17

D Code for preprocessing Ebird data 19

E Code for running the models and producing plots 21

F Code for producing the distribution map 28

1

1 Introduction

One of the key issues in ecological and species conservation research is the esti-
mation of species abundance and occupancy, and in particular their variability
in time and across different locations. One growing trend is the use of citizen
science data sets, which allow researchers to utilize species sighting data from
hobbyists and amateurs [1]. There is some evidence that data from volunteers
can produce reliable estimates [2, 3], but using such data can naturally be diffi-
cult, and care must be taken in the modeling phase for good results. The goal
of this project was to use the public eBird data set [4] to conduct a case study
on the occupancy of the Eurasian Blue Tit bird inside Finland using a fully
Bayesian occupancy model.

The main quantity of interest in this project was the occupancy of a species,
which can be defined as the probability of at least one bird occupying a location
at any given time. It depends only on factors concerning the location, such as
the vegetation. In occupancy models [5], this quantity is separated from the de-
tectability, which depends on factors such as the effort put in to the observation
process as well as the environment itself. The actual probability of observing
the species in question is then the product of occupancy and detectability. Fig-
ure 1 illustrates the modeling idea. The goal of occupancy modeling is to move
away from just predicting the variability in the data to estimating the actual
distribution of the species by controlling for the detectability.

2 The data set and model

2.1 Description

The full eBird data set[6] contains over half a billion bird sightings around the
world, and about eight hundred thousand sightings in Finland. It is collected by
independent amateur bird watchers as checklists that are filled after each birding
trip. The fields contain information about the species of birds observed, their
amount, effort variables such as the time spent on observing and the distance
traveled during the observation, as well as whether the checklist was ”complete”.
Completeness means that the watchers reported all birds that they were able to
during the trip, and it is crucial for occupancy modeling because it allows us to
know whether the observed didn’t observe the species in question.

eBird data has been used extensively in research [7], and to be honest I’m
not sure about everything that has been done, but this study differs on existing
ones on occupancy in that I haven’t seen it done in Finland, and also with a
full Bayesian model (although most likely that has been done in one way or the
other). Also, the covariates for occupancy and detectability were chosen by me
and the exact modeling approach was invented by myself, so it’s unlikely that
something identical has been done elsewhere.

Following the Cornell University tutorial on modeling eBird data [8], I also
used satellite data from the MODIS satellite [9] to estimate the habitat type

2

Figure 1: A graph illustrating the relationships between the data and the model. The variables
inside the box correspond to measurements/unmeasured latent variables that were different
for each observation, while θdetection and θhabitat correspond to the model parameters for
estimating the detectability and occupancy.

across Finland. These estimates were used as the habitat covariates in the
model. In the data, which uses the University of Maryland (UMD) classification,
the habitats are divided in to 15 categories, such as ”water bodies”, ”evergreen
needleleaf forests”, ”mixed forests”, ”urban” etc.

2.2 Preprocessing

Preprocessing the data, especially the satellite data, was somewhat complicated,
but I was able to mostly follow the instructions and best practises presented in
the Cornell University tutorial [8]. The auk package for R was used to zero-fill
(add non-observations of birds) the data efficiently, which was needed because
one of the required files was 15GB in size. Following the tutorial, I restricted the
analysis on observations with the duration of observations under 5 hours, the
distance traveled under 5 km and the number of observers under 6 to reduce the
variation in detectability and make modeling easier. I chose observations on the
Eurasian Blue Tit (Finnish: sinitiainen) in the period 1.6.2020-31.7.2020. The
period was chosen to be short enough that the occupancy hopefully shouldn’t
change much in time, but also to not reduce the amount of data too much.
The Blue Tit is a good bird to do the analysis with since it has one of the
highest amount of sightings in Finland according to a preliminary exploratory
data analysis (see also Fig. 2). This should reduce the problem of imbalanced
classes and make the analysis easier. After all the filters, the remaining data
set had 2 197 observations on Blue Tit presence/absence.

The satellite data could have been combined with the bird observations so
that we would extract the habitat for the longitude and latitude marked for the
observation, but this would have been problematic because people sometimes
walk around during observing and more importantly because birds don’t live in
single points. What matters is the general landscape around the observation.

3

Figure 2: Left: The Eurasian Blue Tit. Right: Blue Tit sightings and non-sightings in June
and July between 2010 and 2020.

Again following the tutorial, I chose a neighborhood centered on the observation
so that its diameter was 5 MODIS satellite cells, and the habitat covariates were
defined as the proportions of each landscape class in the neighborhood (also
called PLAND).

2.3 The model

As a first attempt at a model, I chose the covariates for the occupancy to
simply be the proportions of the different habitats around the observation spot
(pij for observation i and habitat j). The covariates for the occupancy were
chosen as the duration of the observation Ti (in minutes), distance travelled
si (in kilometers) and the proportion of forest in the area, fi. The proportion
was defined as the sum of the four different forest class proportions, and was
motivated by the fact that it’s most likely more difficult to see far away in a
dense forest. Some of the notable assumptions by a model like this are that
the occupancy was constant for the chosen time period at all locations, the
detection probability didn’t depend on observers directly and that the time of
the observation doesn’t influence detectability either. The probabilistic model

4

was then defined as:

cj ∼ N(0, 10)

cT ∼ N(0, 0.1)

cs ∼ N(0, 2)

cf ∼ N(0, 10)

ao ∼ N(0, 2)

ad ∼ N(0, 2)

Oi = σ(ao +
∑
j

cjpij)

Di = σ(ad + cTTi + cssi + cffi)

yi|Oi, Di ∼ Bern(Oi ·Di)

Here cj are logistic regression coefficients on the PLAND habitat covariates and
cT , cs and sf are logistic regression coefficients on observability covariates. Oi

and Di are the occupancies and detectabilities for data points i, and σ is the
logistic function. The priors on coefficients were chosen to be weakly informative
based on the ranges of the variables. Noting that a total change of 1 unit in
the sum inside the logistic functions usually makes a large difference in the
output, a standard deviation of 10 for landscape cover covariates made sense
since it’s unlikely that a change of 0.1 in some proportion would have a larger
effect than something like 0.1·20=2 (two standard deviations) in the input to
the logistic function. Similarly, the durations in minutes ranged from 0 to 300
(with most closer to 0 than 300 in the entire Finnish data set according to
preliminary exploratory analysis), and a change from 10 minutes to 20 minutes
should be able to have a large effect. With two standard deviations, 10·0.2=2
is quite large indeed, and perhaps the prior could be even tighter. The prior for
distance traveled was chosen similarly with a change in 1 km causing a change
of 1·4=4 if the value of cs is two standard deviations from the mean. The priors
for the constant parameters a0 and ad were also chosen with the same principle.

Aside from the simple model, I also experimented with using the observation
start time as a covariate for detectability as well. This makes sense since most
likely it’s more difficult to observe the bird in the night than during the day,
but having the start time as a simple extra parameter in the logistic regression
won’t make sense either since we can expect the response to be nonlinear and
periodic (0h and 24h from the start of the day should be equal). I decided to
model the response based on the idea of a Fourier series decomposition of the
probability of detection as a function of observation start time:

p(detect|t) ≈ a0
2

+

N∑
n=1

(
an cos(

2πnt

24
) + bn sin(

2πnt

24
)

)
with some coefficients an and bn and for start time t in hours. With high enough
N , the decomposition should be close to the true function. We can control the

5

wigliness of the estimate by adjusting it to a lower value. To incorporate the
idea to the model, I included similar terms inside the logistic function in the
detectability model:

an ∼ N(0, 2)

bn ∼ N(0, 2)

Di = σ(ad + cTTi + cssi + cffi +

N∑
n=1

(an cos(
2πnti

24
) + bn sin(

2πnti
24

))

where the weakly informative priors were again chosen to be reasonably wide
considering that the outputs of sin and cos functions are between -1 and 1. I
tried two models: One with N = 1 and one with N = 2.

3 Results

All of the Stan code and most relevant R code is in the Appendix, as I felt that
they would unnecessarily clutter this section.

3.1 Setup and convergence diagnostics

I ran Stan on all three modes with 2000 MCMC iterations per chain (1000
warmup, 1000 sampling) and 4 chains. Table 1 lists the relevant convergence
diagnostics for all three models. For all models, R̂ values were at most 1.01,
which indicates that there were no problems with the mixing of the four chains,
and our samples were likely from the correct posterior. Effective sample size
values for the first model were not great for all parameters (491 at lowest out
of 4000 actual samples), but acceptable. Perhaps a bit surprisingly, the ESS
values were much better for the models with additional start time parameters
(2 and 3). A larger effective sample size means that we can be more sure of
estimates made using the sampled values, and it looks like most of the time we
have a pretty good number of effective samples to calculate expectations with,
for example. Also, there were no divergent transitions in any of the models.
This means that the HMC sampler didn’t encounter ”difficult” regions in the
target distribution which it couldn’t explore well enough, and we should be able
to trust the inferences. The maximum tree-depth wasn’t exceeded, meaning
that the no-U-turn sampler didn’t have to terminate prematurely at any point.

3.2 Posterior predictive checking and model selection

I conducted three different posterior predictive checks for all models. First,
following the lecture slides, I plotted the actual observed/not observed values
w.r.t. the predicted probabilities of observing them, and binned them in to eight
groups w.r.t. their predicted probabilities. I then calculated the proportions of
”observed” data points inside each bin and their binomial confidence intervals
(with the normal approximation). If the model is able to explain the data well

6

Model 1 Model 2 Model 3

Parameter R̂ Bulk ESS R̂ Bulk ESS R̂ Bulk ESS
c1 1.00 763 1.00 1192 1.00 1249
c2 1.01 491 1.00 2722 1.00 2838
c3 1.00 4229 1.00 5525 1.00 6211
c4 1.00 4572 1.00 5556 1.00 5914
c5 1.01 617 1.00 1988 1.00 1851
c6 1.00 2833 1.00 2470 1.00 2894
c7 1.00 784 1.00 1118 1.00 1169
c8 1.00 758 1.00 1336 1.00 1338
c9 1.00 834 1.00 1116 1.00 1161
c10 1.01 535 1.00 3728 1.00 3707
c11 1.00 4302 1.00 5879 1.00 4172
c12 1.00 782 1.00 1859 1.00 1787
c13 1.00 3201 1.00 4766 1.00 5971
ao 1.00 748 1.00 1076 1.00 1118
cT 1.00 637 1.00 3598 1.00 4323
cs 1.00 3660 1.00 5210 1.00 4872
cf 1.00 1922 1.00 3294 1.00 3280
ad 1.01 641 1.00 3599 1.00 3164
a1 - - 1.00 5608 1.00 3535
b1 - - 1.00 4688 1.00 3524
a2 - - - - 1.00 3578
b2 - - - - 1.00 4852

Table 1: Convergence diagnostics for the three models considered. Model 1 corresponds to
the model with no start time dependence on detectability, model 2 uses only the first two
Fourier coefficients (N=1) and model 3 uses the first four (N=2).

7

enough, then this should result in the proportions being close to the predicted
probabilities inside the corresponding bins. These are plotted in Fig.3. We can
see that all models are OK for the most part, but the first model doesn’t match
as well with the data as the other two. The third (N=2) model seems somewhat
better than the second model. I also tried more concrete predictive checks by
plotting the marginal probability of observing the bird with respect to distance
traveled and the starting time, estimated directly from the counts in the data
and from the predicted probabilities from the model. This also involved binning
of the distances traveled and starting times in to different groups and calculating
proportions inside them. These are plotted in Figs.4 and 5. Looking at the error
bars on the distance plot, it’s clear that even though the probability predictions
don’t match that well with the directly estimated means, this could easily be
due to random chance. The most striking differences are seen in the starting
time plot, with the estimates matching better and better with the data as we
increase the complexity of the model. This is not surprising, but we see that
including the starting time directly is important.

Figure 3: The logistic regression -type posterior predictive check for all three models. Ex-
plained in the main text.

I also tried comparing the models with the PSIS-LOO values, but some of
the pareto-k-diagnostic values were quite bad for all models, and the estimates
weren’t reliable out of the box. Judging from Fig.5 and especially Fig.3, I would,
however, say that the third model was the best out of these. I also compared the
predictive accuracies of the model (predicting whether the bird is observed or
not), and the values were 0.73, 0.76 and 0.78 for models 1, 2 and 3, respectively.
The accuracies also imply that model 3 is the best out of these.

3.3 Prior sensitivity checking

As we decided to select the third model based on the previous section, I decided
to investigate the sensitivity to prior choice only on that one. I fitted two addi-
tional models: one with the standard deviations of parameters reduced to one
fifth of the original values, and one with standard deviations increased to three

8

Figure 4: Posterior predictive check of marginal probability given distance traveled, predicted
by the model and estimated directly from the data (black is data, red is model prediction)

Figure 5: Posterior predictive check of marginal probability given observation starting time,
predicted by the model and estimated directly from the data (black is data, red is model
prediction)

times the original values. Figure 6 shows the logistic regression-type posterior
predictive check for all three fits. We see that the model is somewhat sensi-
tive to prior choice, and both drastically decreasing or increasing the standard
deviations results in decreased model performance.

9

Figure 6: The logistic regression type posterior predictive checks for the different priors. The
standard deviations are reduced to one fifth for the tight priors and increased three-fold for
the wide priors.

3.4 Analysis of results

Figure 7 shows the estimates of the coefficients for the third model. We can
immediately draw some conclusions: It seems that the blue tit prefers evergreen
needleleaf forests and wetlands the most, but urban areas and mixed forests
are probably positive factors as well. Open areas such as open shrublands or
croplands are not preferred by the bird. As expected, the distance travelled and
observation duration contribute positively to detectability, while forest cover
contributes negatively.

Figure 7: Selected logistic regression coefficient distributions from the third model. The
detectability coefficients were normalized by multiplying with the standard deviation of the
corresponding covariate in the data set. Note that the habitat names are based on the Uni-
versity of Maryland land cover classification system, and may not reflect the corresponding
habitat in Finland accurately (e.g. Savanna). Search the UMD classification system for exact
interpretations.

Since we assumed that the occupancy is dependent only on the habitat data,
which we got from the MODIS satellite, we can use the generated coefficient

10

draws to estimate the occupancy elsewhere in Finland as well. This was accom-
plished by dividing Finland in to cells that were the same size as the cells that
were used to estimate the habitat distribution around birding sites, and for each
cell estimated the expected value and standard deviation of occupancy based on
the 3rd model draws. The result is shown in Fig. 8. We see that especially in
southern Finland there are areas which have a high occupancy, but for instance
northern Lapland has a notably low occupancy, aside from the region around
lake Inari.

Figure 8: The expected occupancy of the Blue Tit in Finland and the standard deviation of
occupancy in 2020 June-July, according to the third model.

4 Discussion

4.1 Model issues and improvements

There are many things that could possibly be improved with the model. To relax
the assumptions made about what factors exactly influence the occupancy and
detectability variables, we could increase the amount of covariates. For instance,
having the coordinates as additional covariates for the occupancy model or
somehow including variables that determine how good the individual observers
are could make the results more accurate. On the other hand, especially the
third model seemed to explain the data quite well, and the results were quite
sensible. Creating a too complex model could have some disadvantages as well,
since we want the model to stay interpretable to ensure that our conclusions
make sense.

11

A second, slightly different type of extension to the model would be to add
the time of year as a covariate for occupancy. The advantage for this would
be that we wouldn’t need to assume a constant occupancy for the chosen time
period, and our results would be applicable to other times of year outside June
and July.

A third possible improvement would be to replace the simple logistic re-
gression terms in the probabilistic model with something more complex. One
simple option would be to add interaction terms (like cT,sTisi) to the logistic re-
gression. This could make sense especially with observation duration and start
times, since those two variables together determine what the actual period of
observation was.

4.2 Conclusions

A simple, but fully Bayesian, occupancy model using logistic regression and in
particular Fourier features for the observation start time can evidently produce
sensible and interpretable results concerning the occupancy and detectability of
a species. A fully Bayesian approach is clearly useful in this context, since it
allows us to determine the uncertainty in our conclusions regarding the model.
This is very important if we want to make rigorous scientific research that could
impact conservation action, for instance. The eBird data set seems to be well
fitting for this type of modeling, and although the amount of observations in
Finland is smaller than in the US, for instance, using a common species like
the Eurasian Blue Tit seems to bypass this problem. The next thing to try out
would naturally be a species that is less common or even endangered.

I personally learned a lot of stuff making this project. I had never heard
about occupancy or abundance models and in that way I learned some basics of
research in ecology. I had never used satellite data before and only a little bit
of map data in general. I also learned quite a bit of R, especially things relating
to tidyverse like ggplot. I got some hands-on experience in formulating a fully
Bayesian model to solve a scientific problem and especially got more familiar
with Stan and the Bayesian workflow.

References

[1] B. L. Sullivan, T. Phillips, A. A. Dayer, C. L. Wood, A. Farnsworth, M. J.
Iliff, I. J. Davies, A. Wiggins, D. Fink, W. M. Hochachka, et al., “Using open
access observational data for conservation action: A case study for birds,”
Biological Conservation, vol. 208, pp. 5–14, 2017.

[2] A. W. Crall, G. J. Newman, T. J. Stohlgren, K. A. Holfelder, J. Graham,
and D. M. Waller, “Assessing citizen science data quality: an invasive species
case study,” Conservation Letters, vol. 4, no. 6, pp. 433–442, 2011.

[3] A. J. van Strien, C. A. van Swaay, and T. Termaat, “Opportunistic cit-
izen science data of animal species produce reliable estimates of distribu-

12

tion trends if analysed with occupancy models,” Journal of Applied Ecology,
vol. 50, no. 6, pp. 1450–1458, 2013.

[4] B. L. Sullivan, C. L. Wood, M. J. Iliff, R. E. Bonney, D. Fink, and S. Kelling,
“ebird: A citizen-based bird observation network in the biological sciences,”
Biological conservation, vol. 142, no. 10, pp. 2282–2292, 2009.

[5] D. I. MacKenzie, J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle,
and C. A. Langtimm, “Estimating site occupancy rates when detection prob-
abilities are less than one,” Ecology, vol. 83, no. 8, pp. 2248–2255, 2002.

[6] “ebird basic dataset. version: Ebd_reloct-2020.,” Cornell Lab of
Ornithology, Ithaca, New York.

[7] “https://ebird.org/science/publications,”

[8] “https://cornelllabofornithology.github.io/ebird-best-practices/index.html,”

[9] “https://lpdaac.usgs.gov/products/mcd12q1v006/,”

13

A Stan code for model 1

data {

int<lower=0> N;//Amount of observations

int observed[N];//Whether the bird was observed or not

int<lower=0> N_habitats;

int<lower=0> N_localities;

vector[N_habitats] habitat_prop[N_localities];

int localities[N];//The ids have to be preprocessed go 1..N_localities

vector[N] duration_minutes;

vector[N] distance_traveled;//Perhaps should also have the protocol type?

vector[N] forest_prop;//Used for detection model

int<lower=0> check_N;

int check_indices_habprop[check_N];

int check_indices_others[check_N];

}

// The parameters accepted by the model. Our model

// accepts two parameters ’mu’ and ’sigma’.

parameters {

//Obs. model parameters

vector[N_habitats] habitat_coef;

real habitat_bias;

//Detection model parameters

real duration_coef;

real distance_coef;

real forest_prop_coef;

real detectability_bias;

}

// The model to be estimated. We model the output

// ’y’ to be normally distributed with mean ’mu’

// and standard deviation ’sigma’.

model {

vector[N_localities] occupied_prob;

vector[N] detected_prob;

//Occupancy model

for(j in 1:N_habitats){//priors for coefs

habitat_coef[j] ~ normal(0,5);

}

habitat_bias ~ normal(0,2);

for(i in 1:N_localities){

occupied_prob[i] = inv_logit(habitat_bias + sum(habitat_coef .* habitat_prop[i,]));

}

//Detection model

duration_coef ~ normal(0,0.5);

14

distance_coef ~ normal(0,2);

forest_prop_coef ~ normal(0,5);

detectability_bias ~ normal(0,2);

for(k in 1:N){

detected_prob[k] = inv_logit(detectability_bias + duration_coef*duration_minutes[k] +

distance_coef*distance_traveled[k] +

forest_prop_coef*forest_prop[k]);

}

//Combining the two

for(k in 1:N){

observed[k] ~ bernoulli(occupied_prob[localities[k]] * detected_prob[k]);

}

}

generated quantities{

int observed_check[check_N];

vector[check_N] occupied_prob;

vector[check_N] detected_prob;

for(i in 1:check_N){

occupied_prob[i] = inv_logit(habitat_bias + sum(habitat_coef .* habitat_prop[check_indices_habprop[i],]));

}

for(k in 1:check_N){

detected_prob[k] = inv_logit(detectability_bias + duration_coef*duration_minutes[check_indices_others[k]] +

distance_coef*distance_traveled[check_indices_others[k]] +

forest_prop_coef*forest_prop[check_indices_others[k]]);

}

for(k in 1:check_N){

observed_check[k] = bernoulli_rng(occupied_prob[k] * detected_prob[k]);

}

}

B Stan code for model 2

data {

int<lower=0> N;//Amount of observations

int observed[N];//Whether the bird was observed or not

int<lower=0> N_habitats;

int<lower=0> N_localities;

vector[N_habitats] habitat_prop[N_localities];

int localities[N];//The ids have to be preprocessed go 1..N_localities

vector[N] duration_minutes;

vector[N] distance_traveled;//Perhaps should also have the protocol type?

vector[N] forest_prop;//Used for detection model

vector[N] start_time;

int<lower=0> check_N;

int check_indices_habprop[check_N];

15

int check_indices_others[check_N];

}

// The parameters accepted by the model. Our model

// accepts two parameters ’mu’ and ’sigma’.

parameters {

//Obs. model parameters

vector[N_habitats] habitat_coef;

real habitat_bias;

//Detection model parameters

real duration_coef;

real distance_coef;

real forest_prop_coef;

real detectability_bias;

//Start time model parameters

real a1;

real b1;

}

// The model to be estimated. We model the output

// ’y’ to be normally distributed with mean ’mu’

// and standard deviation ’sigma’.

model {

vector[N_localities] occupied_prob;

vector[N] detected_prob;

//Occupancy model

for(j in 1:N_habitats){//priors for coefs

habitat_coef[j] ~ normal(0,5);

}

habitat_bias ~ normal(0,2);

for(i in 1:N_localities){

occupied_prob[i] = inv_logit(habitat_bias + sum(habitat_coef .* habitat_prop[i,]));

}

//Detection model

duration_coef ~ normal(0,0.5);

distance_coef ~ normal(0,2);

forest_prop_coef ~ normal(0,5);

detectability_bias ~ normal(0,2);

a1 ~ normal(0,2);

b1 ~ normal(0,2);

for(k in 1:N){

detected_prob[k] = inv_logit(detectability_bias + duration_coef*duration_minutes[k] +

distance_coef*distance_traveled[k] +

forest_prop_coef*forest_prop[k] +

a1*cos(2*pi()*start_time[k]/24) + b1*sin(2*pi()*start_time[k]/24));

}

16

//Combining the two

for(k in 1:N){

observed[k] ~ bernoulli(occupied_prob[localities[k]] * detected_prob[k]);

}

}

generated quantities{

int observed_check[check_N];

vector[check_N] occupied_prob;

vector[check_N] detected_prob;

for(i in 1:check_N){

occupied_prob[i] = inv_logit(habitat_bias + sum(habitat_coef .* habitat_prop[check_indices_habprop[i],]));

}

for(k in 1:check_N){

detected_prob[k] = inv_logit(detectability_bias + duration_coef*duration_minutes[check_indices_others[k]] +

distance_coef*distance_traveled[check_indices_others[k]] +

forest_prop_coef*forest_prop[check_indices_others[k]] +

a1*cos(2*pi()*start_time[check_indices_others[k]]/24) +

b1*sin(2*pi()*start_time[check_indices_others[k]]/24));

}

for(k in 1:check_N){

observed_check[k] = bernoulli_rng(occupied_prob[k] * detected_prob[k]);

}

}

C Stan code for model 3

data {

int<lower=0> N;//Amount of observations

int observed[N];//Whether the bird was observed or not

int<lower=0> N_habitats;

int<lower=0> N_localities;

vector[N_habitats] habitat_prop[N_localities];

int localities[N];//The ids have to be preprocessed go 1..N_localities

vector[N] duration_minutes;

vector[N] distance_traveled;//Perhaps should also have the protocol type?

vector[N] forest_prop;//Used for detection model

vector[N] start_time;

int<lower=0> check_N;

int check_indices_habprop[check_N];

int check_indices_others[check_N];

}

// The parameters accepted by the model. Our model

// accepts two parameters ’mu’ and ’sigma’.

parameters {

17

//Obs. model parameters

vector[N_habitats] habitat_coef;

real habitat_bias;

//Detection model parameters

real duration_coef;

real distance_coef;

real forest_prop_coef;

real detectability_bias;

//Start time model parameters

real a1;

real b1;

real a2;

real b2;

}

// The model to be estimated. We model the output

// ’y’ to be normally distributed with mean ’mu’

// and standard deviation ’sigma’.

model {

vector[N_localities] occupied_prob;

vector[N] detected_prob;

//Occupancy model

for(j in 1:N_habitats){//priors for coefs

habitat_coef[j] ~ normal(0,5);

}

habitat_bias ~ normal(0,2);

for(i in 1:N_localities){

occupied_prob[i] = inv_logit(habitat_bias + sum(habitat_coef .* habitat_prop[i,]));

}

//Detection model

duration_coef ~ normal(0,0.5);

distance_coef ~ normal(0,2);

forest_prop_coef ~ normal(0,5);

detectability_bias ~ normal(0,2);

a1 ~ normal(0,2);

b1 ~ normal(0,2);

a2 ~ normal(0,2);

b2 ~ normal(0,2);

for(k in 1:N){

detected_prob[k] = inv_logit(detectability_bias + duration_coef*duration_minutes[k] +

distance_coef*distance_traveled[k] +

forest_prop_coef*forest_prop[k] +

a1*cos(2*pi()*start_time[k]/24) + b1*sin(2*pi()*start_time[k]/24) +

a2*cos(2*pi()*2*start_time[k]/24) + b2*sin(2*pi()*2*start_time[k]/24));

}

//Combining the two

18

for(k in 1:N){

observed[k] ~ bernoulli(occupied_prob[localities[k]] * detected_prob[k]);

}

}

generated quantities{

int observed_check[check_N];

vector[check_N] occupied_prob;

vector[check_N] detected_prob;

for(i in 1:check_N){

occupied_prob[i] = inv_logit(habitat_bias + sum(habitat_coef .* habitat_prop[check_indices_habprop[i],]));

}

for(k in 1:check_N){

detected_prob[k] = inv_logit(detectability_bias + duration_coef*duration_minutes[check_indices_others[k]] +

distance_coef*distance_traveled[check_indices_others[k]] +

forest_prop_coef*forest_prop[check_indices_others[k]] +

a1*cos(2*pi()*start_time[check_indices_others[k]]/24) + b1*sin(2*pi()*start_time[check_indices_others[k]]/24) +

a2*cos(2*pi()*2*start_time[check_indices_others[k]]/24) + b2*sin(2*pi()*2*start_time[check_indices_others[k]]/24));

}

for(k in 1:check_N){

observed_check[k] = bernoulli_rng(occupied_prob[k] * detected_prob[k]);

}

}

D Code for preprocessing Ebird data

library(auk)

library(lubridate)

library(sf)

library(gridExtra)

library(tidyverse)

select <- dplyr::select

dir.create("data", showWarnings = FALSE)

ebd <- auk_ebd("ebd_FI_relOct-2020.txt",

file_sampling = "ebd_sampling_relOct-2020.txt")

ebd

ebd_filters <- ebd %>%

auk_species("Eurasian Blue Tit") %>%

auk_country("Finland") %>%

june and july, use * to get data from any year

auk_date(date = c("*-06-01", "*-07-31")) %>%

restrict to the standard traveling and stationary count protocols

auk_protocol(protocol = c("Stationary", "Traveling")) %>%

auk_complete()

ebd_filters

19

data_dir <- "data"

f_ebd <- file.path(data_dir, "ebd_bluetit_junejuly.txt")

f_sampling <- file.path(data_dir, "ebd_checklists_junejuly.txt")

if (!file.exists(f_ebd)) {

auk_filter(ebd_filters, file = f_ebd, file_sampling = f_sampling, overwrite = TRUE)

}

ebd_zf <- auk_zerofill(f_ebd, f_sampling, collapse = TRUE)

time_to_decimal <- function(x) {

x <- hms(x, quiet = TRUE)

hour(x) + minute(x) / 60 + second(x) / 3600

}

clean up variables

ebd_zf <- ebd_zf %>%

mutate(

convert X to NA

observation_count = if_else(observation_count == "X",

NA_character_, observation_count),

observation_count = as.integer(observation_count),

effort_distance_km to 0 for non-travelling counts

effort_distance_km = if_else(protocol_type != "Traveling",

0, effort_distance_km),

convert time to decimal hours since midnight

time_observations_started = time_to_decimal(time_observations_started),

split date into year and day of year

year = year(observation_date),

day_of_year = yday(observation_date)

)

ebd_zf$observation_count

additional filtering

ebd_zf_filtered <- ebd_zf %>%

filter(

effort filters

duration_minutes <= 5 * 60,

effort_distance_km <= 5,

last 10 years of data

year >= 2010,

10 or fewer observers

number_observers <= 10)

ebird <- ebd_zf_filtered %>%

select(checklist_id, observer_id, sampling_event_identifier,

scientific_name,

observation_count, species_observed,

20

state_code, locality_id, latitude, longitude,

protocol_type, all_species_reported,

observation_date, year, day_of_year,

time_observations_started,

duration_minutes, effort_distance_km,

number_observers)

write_csv(ebird, "data/ebd_bluetit_junejuly_zf.csv", na = "")

E Code for running the models and producing plots

library(lubridate)

library(sf)

library(dggridR)

library(raster)

library(ebirdst)

library(fields)

library(tidyverse)

library(rstan)

resolve namespace conflicts

select <- dplyr::select

projection <- raster::projection

ebird <- read_csv("data/ebd_bluetit_junejuly_zf.csv") %>%

mutate(year = year(observation_date),

occupancy modeling requires an integer response

species_observed = as.integer(species_observed))

modis land cover covariates

habitat <- read_csv("data/modis_pland_location-year.csv") %>%

mutate(year = as.integer(year))

combine ebird and habitat data

ebird_habitat <- inner_join(ebird, habitat, by = c("locality_id", "year"))

filter prior to creating occupancy model data

ebird_filtered <- filter(ebird_habitat,

number_observers <= 5,

year == max(year))

time_freq <- ebird_filtered %>%

mutate(tod_bins = cut(time_observations_started,

breaks = 0:24,

labels = 0:23,

include.lowest = TRUE),

tod_bins = as.numeric(as.character(tod_bins))) %>%

group_by(tod_bins) %>%

summarise(n_checklists = n(),

n_detected = sum(species_observed),

det_freq = mean(species_observed))

21

plot(time_freq$tod_bins, time_freq$det_freq)

load gis data for making maps

map_proj <- st_crs(4326)

ne_land <- read_sf("data/gis-data.gpkg", "ne_land") %>%

st_transform(crs = map_proj) %>%

st_geometry()

N_localities <- n_distinct(ebird_filtered$locality_id)

loc_ids <- tibble(locality_id = unique(ebird_filtered$locality_id), locality_simpleid = 1:N_localities)

ebird_filtered <- inner_join(ebird_filtered, loc_ids, by = c("locality_id"))

ebird_filtered$locality_simpleid

habitats <-

c("pland_00_water",

"pland_01_evergreen_needleleaf",

"pland_03_deciduous_needleleaf",

"pland_04_deciduous_broadleaf",

"pland_05_mixed_forest",

"pland_07_open_shrubland",

"pland_08_woody_savanna",

"pland_09_savanna",

"pland_10_grassland",

"pland_11_wetland",

"pland_12_cropland",

"pland_13_urban",

"pland_15_barren")

habitat_prop <- distinct(inner_join(loc_ids, ebird_filtered[,append(c("locality_id"),habitats)], by=c("locality_id")))

habitat_prop

forest_prop <- ebird_filtered %>%

select(c("pland_01_evergreen_needleleaf",

"pland_03_deciduous_needleleaf",

"pland_04_deciduous_broadleaf",

"pland_05_mixed_forest")) %>%

mutate(sum = rowSums(.[1:4])) %>%

select("sum")

ppcheck_indices <- 1:dim(ebird_filtered)[1]#sample(1:dim(ebird_filtered)[1],300)

ppcheck_indices_habprop <- ebird_filtered$locality_simpleid#ebird_filtered[ppcheck_indices,]$locality_simpleid

stan_fit_1 <- stan("model.stan", data=list(N=dim(ebird_filtered)[1],

observed=ebird_filtered$species_observed,

N_habitats=length(habitats),

N_localities=dim(loc_ids)[1],

habitat_prop=habitat_prop[,habitats],

localities=ebird_filtered$locality_simpleid,

duration_minutes=ebird_filtered$duration_minutes,

22

distance_traveled=ebird_filtered$effort_distance_km,

forest_prop=forest_prop$sum,

check_N=length(ppcheck_indices),

check_indices_habprop=ppcheck_indices_habprop,

check_indices_others=ppcheck_indices),

iter=2000, chains=4)

save("stan_fit_1",file="data/model1fit")

load("data/model1fit")

stan_fit_3 <- stan("model3.stan", data=list(N=dim(ebird_filtered)[1],

observed=ebird_filtered$species_observed,

N_habitats=length(habitats),

N_localities=dim(loc_ids)[1],

habitat_prop=habitat_prop[,habitats],

localities=ebird_filtered$locality_simpleid,

duration_minutes=ebird_filtered$duration_minutes,

distance_traveled=ebird_filtered$effort_distance_km,

forest_prop=forest_prop$sum,

start_time=ebird_filtered$time_observations_started,

check_N=length(ppcheck_indices),

check_indices_habprop=ppcheck_indices_habprop,

check_indices_others=ppcheck_indices),

iter=2000, chains=4)

save("stan_fit_3",file="data/model3fit")

load("data/model3fit")

stan_fit_3 <- stan("model3.stan", data=list(N=dim(ebird_filtered)[1],

observed=ebird_filtered$species_observed,

N_habitats=length(habitats),

N_localities=dim(loc_ids)[1],

habitat_prop=habitat_prop[,habitats],

localities=ebird_filtered$locality_simpleid,

duration_minutes=ebird_filtered$duration_minutes,

distance_traveled=ebird_filtered$effort_distance_km,

forest_prop=forest_prop$sum,

start_time=ebird_filtered$time_observations_started,

check_N=length(ppcheck_indices),

check_indices_habprop=ppcheck_indices_habprop,

check_indices_others=ppcheck_indices),

iter=2000, chains=4)

save("stan_fit_3",file="data/model3fit")

load("data/model3fit")

stan_fit_4 <- stan("model4.stan", data=list(N=dim(ebird_filtered)[1],

observed=ebird_filtered$species_observed,

N_habitats=length(habitats),

N_localities=dim(loc_ids)[1],

habitat_prop=habitat_prop[,habitats],

localities=ebird_filtered$locality_simpleid,

duration_minutes=ebird_filtered$duration_minutes,

23

distance_traveled=ebird_filtered$effort_distance_km,

forest_prop=forest_prop$sum,

start_time=ebird_filtered$time_observations_started,

check_N=length(ppcheck_indices),

check_indices_habprop=ppcheck_indices_habprop,

check_indices_others=ppcheck_indices),

iter=2000, chains=4)

save("stan_fit_4",file="data/model4fit")

load("data/model4fit")

draws_model1 <- rstan::extract(stan_fit_1, permuted = T)

draws_model3 <- rstan::extract(stan_fit_3, permuted = T)

draws_model4 <- rstan::extract(stan_fit_4, permuted = T)

#----------------------DO THE LOGREG POSTERIOR PREDICTIVE THING FROM THE LECTURE SLIDES---------------

plot_ppcheck <- function(draws_model,modeltitle){

ebird_ppcheck <- tibble(ebird_filtered[ppcheck_indices,], estimated_prob = rowMeans(t(draws_model$observed_check)))

breaks <- seq(0,0.8,0.1)

labels <- (breaks[-1] + breaks[-(length(breaks))])/2

binomial_ppcheck <- ebird_ppcheck %>%

mutate(bin=cut(ebird_ppcheck$estimated_prob, breaks = breaks,

labels = labels,

include.lowest = TRUE),

bin = as.numeric(as.character(bin))) %>%

group_by(bin) %>%

summarise(n_checklists = n(),

n_detected = sum(species_observed),

det_freq = mean(species_observed),

sd = sqrt(det_freq*(1-det_freq)/n_checklists))

plot <- ggplot(binomial_ppcheck) +

geom_pointrange(aes(x=bin, y=det_freq, ymin=det_freq-2*sd,ymax=det_freq+2*sd)) +

geom_point(data=ebird_ppcheck,aes(x=estimated_prob, y=species_observed)) +

geom_line(data=tibble(prob=seq(0,1,0.01),prop=seq(0,1,0.01)),aes(x=prob,y=prop)) +

xlab("Estimated probability") + ylab("") + labs(title=modeltitle)

return(plot)

}

library(patchwork)

g <- plot_ppcheck(draws_model1, "Model 1")+ ylab("Bird observed/not observed and binned frequency") +

plot_ppcheck(draws_model3, "Model 2") + plot_ppcheck(draws_model4, "Model 3")

g

ggsave(g, file="posterior_predictive_1.png" , width=10, height=4)

#---------------------DISTANCE TRAVELED-----------------------

library(gridExtra)

plot_ppcheck_dist <- function(draws_model,modeltitle){

summarize data by 500m bins

24

breaks <- seq(0, 5, by = 0.5)

labels <- breaks[-length(breaks)] + diff(breaks) / 2

ebird_dist <- ebird_filtered[ppcheck_indices,] %>%

mutate(dist_bins = cut(effort_distance_km,

breaks = breaks,

labels = labels,

include.lowest = TRUE),

dist_bins = as.numeric(as.character(dist_bins))) %>%

group_by(dist_bins) %>%

summarise(n_checklists = n(),

n_detected = sum(species_observed),

det_freq = mean(species_observed),

sd = sqrt(det_freq*(1-det_freq)/n_checklists))

#summarize posterior predictive draws

pp_dist <- tibble(effort_distance_km=ebird_filtered[ppcheck_indices,]$effort_distance_km,t(draws_model$observed_check)) %>%

mutate(mean_probs = rowMeans(.),

dist_bins = cut(effort_distance_km,

breaks = breaks,

labels = labels,

include.lowest = TRUE),

dist_bins = as.numeric(as.character(dist_bins))) %>%

group_by(dist_bins) %>%

summarise(det_freq = mean(mean_probs))

#frequency of detection for posterior predictive draws

g_dist_freq <- ggplot(pp_dist) +

aes(x = dist_bins, y = det_freq) +

geom_line(col="red") +

geom_point(col="red", size=2.4) +

scale_x_continuous(breaks = 0:5) +

scale_y_continuous(labels = scales::percent) +

labs(x = "Distance travelled (km)",

y = "% checklists with detections",

title = modeltitle) +

geom_line(data=ebird_dist,aes(x = dist_bins, y = det_freq)) +

geom_point(data=ebird_dist,aes(x = dist_bins, y = det_freq)) +

geom_pointrange(data=ebird_dist, aes(x=dist_bins, y=det_freq, ymin=det_freq-2*sd,ymax=det_freq+2*sd))

return(g_dist_freq)

}

g <-plot_ppcheck_dist(draws_model1,"Model 1") + plot_ppcheck_dist(draws_model3,"Model 2") + plot_ppcheck_dist(draws_model4,"Model 3")

g

ggsave(g, file="posterior_predictive_dist.png" , width=10, height=4)

#-----------------------START TIME PLOTS------------------------

plot_ppcheck_startime <- function(draws_model,modeltitle){

ebird_ppcheck <- tibble(ebird_filtered[ppcheck_indices,], estimated_prob = rowMeans(t(draws_model$observed_check)))

breaks <- 0:24

labels <- breaks[-length(breaks)] + diff(breaks) / 2

25

starttime_ppcheck <- ebird_ppcheck %>%

mutate(tod_bins = cut(time_observations_started,

breaks = breaks,

labels = labels,

include.lowest = TRUE),

tod_bins = as.numeric(as.character(tod_bins))) %>%

group_by(tod_bins) %>%

summarise(n_checklists = n(),

n_detected = sum(species_observed),

det_freq = mean(species_observed),

estimated_prob = mean(estimated_prob))

g_return <- ggplot(starttime_ppcheck) +

geom_line(aes(x=tod_bins,y=det_freq)) + geom_point(aes(x=tod_bins,y=det_freq)) +

geom_line(aes(x=tod_bins,y=estimated_prob),color=’red’) + geom_point(aes(x=tod_bins,y=estimated_prob),color=’red’) +

labs(x = "Start time (h)",

y = "% checklists with detections",

title = modeltitle)

return(g_return)

}

g <-plot_ppcheck_startime(draws_model1,"Model 1") + plot_ppcheck_startime(draws_model3,"Model 2") + plot_ppcheck_startime(draws_model4,"Model 3")

g

ggsave(g, file="posterior_predictive_time.png" , width=10, height=4)

#PSIS-LOO CHECKS

probs_model1 <- draws_model1$occupied_prob*draws_model1$detected_prob

probs_model3 <- draws_model3$occupied_prob*draws_model3$detected_prob

probs_model4 <- draws_model4$occupied_prob*draws_model4$detected_prob

loo(log(probs_model1))

loo(log(probs_model3))

loo(log(probs_model4))

#ACCURACIES

mean(ebird_filtered$species_observed == (colMeans(probs_model1) > 0.5))

mean(ebird_filtered$species_observed == (colMeans(probs_model3) > 0.5))

mean(ebird_filtered$species_observed == (colMeans(probs_model4) > 0.5))

#----------------------------PRIOR SENSITIVITY CHECKS---------------------------------

stan_fit_4_2 <- stan("model4.stan", data=list(N=dim(ebird_filtered)[1],

observed=ebird_filtered$species_observed,

N_habitats=length(habitats),

N_localities=dim(loc_ids)[1],

habitat_prop=habitat_prop[,habitats],

localities=ebird_filtered$locality_simpleid,

duration_minutes=ebird_filtered$duration_minutes,

distance_traveled=ebird_filtered$effort_distance_km,

forest_prop=forest_prop$sum,

start_time=ebird_filtered$time_observations_started,

check_N=length(ppcheck_indices),

check_indices_habprop=ppcheck_indices_habprop,

26

check_indices_others=ppcheck_indices),

iter=2000, chains=4)

save("stan_fit_4_2",file="data/model4fit_2")

load("data/model4fit_2")

stan_fit_4_3 <- stan("model4.stan", data=list(N=dim(ebird_filtered)[1],

observed=ebird_filtered$species_observed,

N_habitats=length(habitats),

N_localities=dim(loc_ids)[1],

habitat_prop=habitat_prop[,habitats],

localities=ebird_filtered$locality_simpleid,

duration_minutes=ebird_filtered$duration_minutes,

distance_traveled=ebird_filtered$effort_distance_km,

forest_prop=forest_prop$sum,

start_time=ebird_filtered$time_observations_started,

check_N=length(ppcheck_indices),

check_indices_habprop=ppcheck_indices_habprop,

check_indices_others=ppcheck_indices),

iter=2000, chains=4)

save("stan_fit_4_3",file="data/model4fit_3")

load("data/model4fit_3")

draws_model4_2 <- rstan::extract(stan_fit_4_2, permuted = T)

draws_model4_3 <- rstan::extract(stan_fit_4_3, permuted = T)

g <- plot_ppcheck(draws_model4, "Model 3, normal")+ ylab("Bird observed/not observed and binned frequency") +

plot_ppcheck(draws_model4_2, "Model 3, tight prior") + plot_ppcheck(draws_model4_3, "Model 3, wide prior")

g

ggsave(g, file="posterior_predictive_sensitivity.png" , width=10, height=4)

#----------------------------RESULT ANALYSIS-----------------------------

habitat_names <- c("Water","Evergreen needleleaf","Deciduous needleleaf", "Deciduous broadleaf", "Mixed forest", "Open shrubland", "Woody savanna",

"Savanna", "Grassland", "Wetland", "Cropland", "Urban", "Barren")

habitat_coef_draws <- data.frame(draws_model4$habitat_coef)

names(habitat_coef_draws) <- habitat_names

occ_plot <- ggplot(stack(habitat_coef_draws), aes(x=ind,y=values)) +

geom_boxplot()+ggtitle("Occupancy coefficients") +

theme(axis.text.x = element_text(face = "bold", color = "#993333", size = 8, angle = 45,hjust = 1)) +

labs(x="",y="")

detection_coef_draws <- tibble(duration_coef = draws_model$duration_coef,

distance_coef=draws_model$distance_coef,

forest_prop_coef=draws_model$forest_prop_coef) %>%

mutate(duration_coef = duration_coef * sd(ebird_filtered$duration_minutes),

distance_coef = distance_coef * sd(ebird_filtered$effort_distance_km),

forest_prop_coef = forest_prop_coef * sd(forest_prop$sum))

det_plot <- ggplot(pivot_longer(detection_coef_draws,cols=c("duration_coef", "distance_coef", "forest_prop_coef")), aes(x=name,y=value)) +

27

geom_boxplot()+ggtitle("Normalized detectability coefficients") +

theme(axis.text.x = element_text(face = "bold", color = "#993333", size = 8, angle = 45,hjust = 1)) +

labs(x="",y="")

g <- occ_plot+det_plot

ggsave(g, file="coefs.png" , width=10, height=4)

F Code for producing the distribution map

library(sf)

library(raster)

library(MODIS)

library(exactextractr)

library(viridis)

library(tidyverse)

library(boot)

resolve namespace conflicts

select <- dplyr::select

map <- purrr::map

projection <- raster::projection

#-------------LOAD MAP DATA---------------

ne_land <- read_sf("data/gis-data.gpkg", "ne_land") %>%

#Project to the native MODIS projection

st_transform(crs = paste("+proj=sinu +lon_0=0 +x_0=0 +y_0=0",

"+a=6371007.181 +b=6371007.181 +units=m +no_defs"))

#-------------LOAD MODIS DATA---------------

landcover <- list.files("data/modis", "^modis_mcd12q1_umd",

full.names = TRUE) %>%

stack()

landcover <- names(landcover) %>%

str_extract("(?<=modis_mcd12q1_umd_)[0-9]{4}") %>%

paste0("y", .) %>%

setNames(landcover, .)

landcover

max_lc_year <- names(landcover) %>%

str_extract("[0-9]{4}") %>%

as.integer() %>%

max()

#-----------GET PREDICTION SURFACE----------

pland <-read_csv("data/modis_pland_location-year.csv") %>%

mutate(year = as.integer(year))

agg_factor <- round(2 * neighborhood_radius / res(landcover))

28

r <- raster(landcover) %>%

aggregate(agg_factor)

r <- ne_land %>%

st_transform(crs = projection(r)) %>%

rasterize(r, field = 1) %>%

remove any empty cells at edges

trim()

r <- writeRaster(r, filename = "data/prediction-surface.tif", overwrite = TRUE)

get cell centers and create neighborhoods

r_centers <- rasterToPoints(r, spatial = TRUE) %>%

st_as_sf() %>%

transmute(id = row_number())

r_cells <- st_buffer(r_centers, dist = neighborhood_radius)

extract landcover values within neighborhoods, only needed most recent year

lc_extract_pred <- landcover[[paste0("y", max_lc_year)]] %>%

exact_extract(r_cells, progress = FALSE) %>%

map(~ count(., landcover = value)) %>%

tibble(id = r_cells$id, data = .) %>%

unnest(data)

calculate the percent for each landcover class

pland_pred <- lc_extract_pred %>%

group_by(id) %>%

mutate(pland = n / sum(n)) %>%

ungroup() %>%

select(-n) %>%

remove NAs after tallying so pland is relative to total number of cells

filter(!is.na(landcover))

convert names to be more descriptive

pland_pred <- pland_pred %>%

inner_join(lc_names, by = "landcover") %>%

arrange(landcover) %>%

select(-landcover)

tranform to wide format, filling in implicit missing values with 0s

pland_pred <- pland_pred %>%

pivot_wider(names_from = lc_name,

values_from = pland,

values_fill = list(pland = 0)) %>%

mutate(year = max_lc_year) %>%

select(id, year, everything())

join in coordinates

pland_coords <- st_transform(r_centers, crs = 4326) %>%

st_coordinates() %>%

as.data.frame() %>%

cbind(id = r_centers$id, .) %>%

29

rename(longitude = X, latitude = Y) %>%

inner_join(pland_pred, by = "id")

#---------------LOAD MODEL-------------------

load("data/model4fit")

draws_model4 <- rstan::extract(stan_fit_4, permuted = T)

pland_coords

habitats <-

c("pland_00_water",

"pland_01_evergreen_needleleaf",

"pland_03_deciduous_needleleaf",

"pland_04_deciduous_broadleaf",

"pland_05_mixed_forest",

"pland_07_open_shrubland",

"pland_08_woody_savanna",

"pland_09_savanna",

"pland_10_grassland",

"pland_11_wetland",

"pland_12_cropland",

"pland_13_urban",

"pland_15_barren")

pland_coords[,5:17]

draws_model4$habitat_coef

occupancy_means <- 0*(1:dim(pland_coords)[1])

occupancy_sds <- 0*(1:dim(pland_coords)[1])

n_samples <- dim(draws_model4$habitat_coef)[1]

dim(pland_coords)

for(i in 1:dim(pland_coords)[1]){

probs <- inv.logit(rowMeans(draws_model4$habitat_coef * pland_coords[i,5:17][rep.int(1, n_samples),]))

occupancy_means[i] <- mean(probs)

occupancy_sds[i] <- sd(probs)

if(i %% 1000 == 0){

print(i)

}

}

occupancy_tibble <- tibble(id=1:dim(pland_coords)[1], occupancy_means=occupancy_means, occupancy_sds=occupancy_sds)

expected_occupancy_cover <- pland_coords %>% inner_join(occupancy_tibble, by="id") %>%

convert to spatial features

st_as_sf(coords = c("longitude", "latitude"), crs = 4326) %>%

st_transform(crs = projection(r)) %>%

rasterize points

rasterize(r, field = occupancy_means) %>%

project to albers equal-area for mapping

30

projectRaster(crs = st_crs(4326)$proj4string, method = "ngb") %>%

trim off empty edges of raster

trim()

uncertainty_occupancy_cover <- pland_coords %>% inner_join(occupancy_tibble, by="id") %>%

convert to spatial features

st_as_sf(coords = c("longitude", "latitude"), crs = 4326) %>%

st_transform(crs = projection(r)) %>%

rasterize points

rasterize(r, field = occupancy_sds) %>%

project to albers equal-area for mapping

projectRaster(crs = st_crs(4326)$proj4string, method = "ngb") %>%

trim off empty edges of raster

trim()

make a map

par(mfrow=c(1,2),mar = c(0.25, 0.25, 2, 0.25))

t <- str_glue("Estimated occupancy of\n",

"the Eurasian Blue Tit in 2020, June-July")

plot(expected_occupancy_cover, axes = FALSE, box = FALSE, col = viridis(10), main = t)

t <- str_glue("Occupancy uncertainty of\n",

"the Eurasian Blue Tit in 2020, June-July")

p2 <- plot(uncertainty_occupancy_cover, axes = FALSE, box = FALSE, col = viridis(10), main = t)

31

	Introduction
	The data set and model
	Description
	Preprocessing
	The model

	Results
	Setup and convergence diagnostics
	Posterior predictive checking and model selection
	Prior sensitivity checking
	Analysis of results

	Discussion
	Model issues and improvements
	Conclusions

	Stan code for model 1
	Stan code for model 2
	Stan code for model 3
	Code for preprocessing Ebird data
	Code for running the models and producing plots
	Code for producing the distribution map

