Toy model protein folding with simulated
annealing

Severi Rissanen

April 2019

1 Introduction

Protein folding has been an active area of study for over half a century by now [1].
Understanding the problem is important, as proteins have an important role in
the regulation of biologic activities and for example misfolding is a cause of
many diseases [2]. Predicting conformations using computational methods thus
has much promise in avoiding slow experimental processes and helping us find
new protein structures as well as understanding their formation [I].

In this project I studied a computational toy model for protein folding, based
on the idea given in Ref. [3]. The model is simplified from the real problem so
that there are only two types of amino acids, which are represented essentially as
single atoms. The protein conformation corresponding to a shape of some chain
of these amino acids should be found by finding the global energy minimum,
a claim also known as the thermodynamic hypothesis [4]. The general aim of
this project was to gain some understanding of the model and to study methods
to find these minimum energy configurations, and in particular a Monte Carlo
simulated annealing procedure was programmed and the results compared with
a library global optimization routine.

2 Theory

In the model, the amino acids form chains with unit distance links between each
of them, and the different possible conformations of the chain are defined by
the angles between consecutive links. In the original article, the model was two-
dimensional, but I decided to do the computations in three dimensions, which
also meant that defining conformations with the angles uniquely was slightly
more tricky. Figure [l|illustrates the procedure, which relies on the bend angles
0; and ¢;. AB always points towards the z-direction, while BC' is rotated
towards the negative y-axis by the angle 6y, defined between 0 and 7. After
this, the directions of the #-rotations are first set to be so that the next bend
is rotated clockwise away from the last bend around the vector got from the
cross product of the two vectors connecting the last three amino acids in order.

Intuitively, this means that the next bend is rotated in the same direction as
the last bend was rotated from the one before it. After this, the ¢-rotation is
applied around the last bend clockwise. In the figure, the position of D is then
defined by first calculating /@ X]ﬁ x 2 and rotating C'D around that by 6,
and then rotating that around B?’ by ¢1. The procedure continues by then
ro%iting DE from CD by 65 around vp, and rotating the result by ¢2 around
C

Figure 1: The definition of a conformation of a chain consisting of 5 amino acids
with the bend angles 6; and ¢;. The vector v, o B? x CD. The letters are
labeling the amino acids, and don’t refer to the species here.

As in Ref. [3], two types of interaction energies were defined. The so-called
backbone bend potentials were set to be

Vl(Gl) = i(l — COS 91>, (1)

the effect of which is to straighten out the chain. Second, Lennard Jones-

potentials, set to act between amino acids separated by at least two links, were

defined as . o
Va(rij, i, j) = 4(—3 + —&) (2)

Tij ij

r

where i and j denote different amino acids within the chain, r;; is the separation
between them and Cj; is a constant depending on the the species of i and j, which
can be either of type A or type B. For two amino acids of type A the constant
equals -1, for two B-acids it is —% and +1 for acids of differing species. Thus,
the potentials can be separated in to strongly attracting, weakly attracting and

strongly repulsing types. The total energy to be minimized was then

N-—-2 N-2 N
Vi = 3 Val0:) + 32 D Valrii.j) (3)

i=1 j=i+2

where N is the total number of acids in the chain.

3 Simulation

In this project, Monte Carlo simulated annealing was used to find minimum
energy conformations of chains, that is, a Metropolis algorithm was run with the
temperature parameter going towards zero. The variables used in the algorithm
were naturally the bend angles 01,...0y_5 and ¢1,...¢x_3, where N is the
number of acids in the chain. The transition probability distributions were
set to be normal distributions centered at the old values and the acceptance
probability defined so that the Boltzmann constant was set to 1, resulting in
the acceptance rate e~ (Enew—Fora)/T where T is the temperature.

In addition to the bend angles, the state of the system was represented
in memory with the relative distance vectors v7, ..., Un_1 between consecutive
acids in the chain, since this was convenient with regards to finding the coordi-
nates of the acids as the bend angles were varied. The procedure for defining
the conformations as outlined in Sec. [2] could then be directly applied using the
Rodrigues’ formula

0 —€3 €9
A =Tcosp+ (1 —cosp)ée? + | e3 0 —ep|sing, (4)
—€9 €1 0

where A is a rotation matrix that applies rotations around the vector é by the
amount ¢. This is quite useful especially since a rotation of an individual bend
angle during the Metropolis run could be realized simply by applying the given
rotation matrix to all relative distance vectors after the bend, optimizing the
algorithm quite a bit.

The results of simulated annealing were also compared with a library global
optimization routine, which implements the Basinhopping algorithm [5]. Since
the algorithm relies on somewhat similar principles and it has been used succes-
fully in similar molecular energy optimization problems [6], it serves as a good
benchmark for the created routine.

4 Results

The two optimization routines were compared by running them multiple times
on one chain and calculating the proportion of runs that resulted in the lowest
energy found on either routine within an accuracy of 0,005. This proportion
can be interpreted as a reliability score for obtaining the global minimum, that

at least one run found the global optimum conformation, which isn’t of course
necessarily true in all cases, but it still serves as a rough metric for comparing
the procedures. The two procedures were run on all differing chains of length
three, four and five for a hundred, fifty and twenty times, respectively.

An attempt was made to choose good parameters for both algorithms, so
that the comparison would be somewhat fair. The state of the system was
prepared with Metropolis thermalization before running for both optimizers,
and the amount of iterations for the procedures were set so that the time taken
was approximately the same. The temperature for annealing was set to start
from 0,1 and go to 0 linearly with the Boltzmann constant set to 1, and the
temperature setting in the basinhopping set to 1, since these seemed to give
good results. The standard deviation for the Metropolis algorithm transition
probability was set to /20 for the same reasons.

Tables [I] and [2] show the performance of the two algorithms for all differing
amino acid chains of length three and four, and the appendices also contain the
results for length five in table Only non-symmetric chains were considered,
meaning that BAA and AAB were not considered separately, for example. We
can see that for simple chains of length three, both algorithms perform quite
well an find the optimal conformation almost all the time, but for lengths four
and five, some chains chains cause problems, and the calculated reliabilities
range all the way from zero to one. It’s notable that the simulated annealing
routine seems to perform better in most cases, and although there are chains
where basinhopping wins, it’s not by a particularly large margin.

BBB | ABA | BBA | BAB | AAA | BAA

Optimal energy -0.030 | -0.66 | 0.032 | -0.030 | -0.66 | 0.032
Annealing reliability 1,0 1,0 1,0 0.99 1,0 1,0
Basinhopping reliability 1,0 1,0 1,0 1,0 1,0 1.0

Table 1: The energy of the optimal configuration from the 100 annealing and
basinhopping runs for chains of length 3 and the proportions of runs that reached
the correct energy within a deviation of 0,005.

BBBB | ABBA | BAAB | AAAA | BBBA

Optimal energy -0,16 -0,036 | 0,062 -2,32 0,0047
Annealing reliability 0,26 0,02 1,0 1,0 1,0
Basinhopping reliability 0,14 0,08 1,0 1,0 1,0

BBAB | BBAA | ABAB | ABAA | BAAA

-0,0008 | 0,067 | -0,65 | -1,45 | -0,59
0,98 1,0 0,98 0,98 0,96
1,0 1,0 1,0 0,98 1,0

Table 2: The energy of the optimal configuration from the 50 annealing and
basinhopping runs for chains of length 4 and the proportions of runs that reached
the correct energy within a deviation of 0,005.

Figures[2 and [3illustrate the lowest energy conformations found by simulated
annealing. Images for chains of length five are included in the appendices in
Fig. [It’s clear that there are essentially two possible conformations for chains
of length three: A bent shape for chains with acids of type A at both ends
and a straight line for the others. The attraction between two type-B acids
at the ends, in particular, is not enough to win the backbone bend potential
and bend the chain. Looking at length-four chains, a few more clearly differing
conformations appear, and for length five we find a whole zoo of protein shapes.
Qualitatively, a clear pattern is that as the length increases, the proportion of
completely straight shapes decreases, from 67% for length three, to 50% for
length four and to 20% for length five. The essential ingredient for straight
shapes seems to be that there should be less of type A acids than of type B,
preventing the strong interactions between type A acids bending the structure,
but also not too many B:s, as in the chains with only type B acids. Whether a
particular chain has a straight shape or not is not easy to guess, however, and
it’s interesting to note that even quite small changes, like replacing the type A
acid in BBBBA towards the center of the chain as in BBBAB, can result in the
straight conformation to change to something completely different.

Figure 5| in the appendix shows a conformation of a chain of length ten,
AAABBBBAAA, found using simulated annealing 300 times and taking the
lowest-energy result. The result makes intuitive sense, since one would expect
that the correct folding puts the ends together and the middle clumped away due
to the attractive interactions between acids of the same type and the repulsion
between the middle and the ends. Fig. [6] presents a histogram for the optimized
energies. There is quite a bit of variation in the results, but the abrupt stop
in the distribution at the left side of the figure may indicate that a much lower
energy won’t be found at least in a same type of conformation as in Fig.
Thus, it seems reasonable that the global minimum was found to some degree
of accuracy.

BBA

EEB ABA
i
15 15
1a 1a
0.5 05
00 0o
035 05
05 0.0 0.5 0.0
0.0 05 —0.5 0.0 05 —0.5
AMA BAA
I
15 15
10 10
05 05
0.0 0.0
05 05
0.0 —0.5 0.0
0.0 ng -0.5

_05 5
00 e -05

Figure 2: The optimal conformations of the six different chains of length 3 found
using simulated annealing. The first acid in the chain always starts at (0,0,0).

EBBE ABBA BAAB AAAA
20 20 20 20
15 15 15 15
10 10 10 10
05 05 05 05
00 00 00 > 00
10 10 10 10
1.0 08'5 1.0 035 10 035 10 035
=0 5[;_0 0s -0.5 =0 59_0 05 -0.5 =0 53_0 05 —0.5 =0 590 05 —0.5
= 1p-10 2 1p-1.0 2 1p-L0 10-1.0
BBBA BBAB BB ABAB
20 20 20
15 15 15
10 10 10
05 05 05
0o 0o 0o
10 10 10
1.0 08? 1.0 od?® 1.0 08?
o, 05 T, 08 %0, 05
2 10-10 2 10-1.0 2 1p-10
ABAA BAAA
P 20
{ 15
1 10
05
00
10
1.0 03'5
0500 . -05
1p-1.0

Figure 3: The optimal conformations of the six different chains of length 4 found
using simulated annealing. The first acid in the chain always starts at (0,0,0).

5 Conclusions

The aim of this project was to implement a simulated annealing procedure to
find minimum energy configurations for toy-model amino acid chains, that is,
the corresponding protein conformations. The capability of the method was
assessed by comparing its results with a library global optimization routine
that uses the basinhopping algorithm, and some qualitative remarks were made
with respect to the folded shapes. It was found that the performance of the
self-programmed method was at least comparable to the library routine, and
possibly even somewhat better. This doesn’t necessarily mean that simulated
annealing is a better algorithm, since the calculation of the energy was better
optimized for it and both methods were given more or less the same time to
run, but we can conclude that implementing your own optimization routine can
give better results quite easily than an out-of-the-box one in this problem.

There are many ways to improve the implemented method. Much thought
wasn’t put into the shape or width of the transition probability distribution
of the Metropolis algorithm, and better choices surely exist. The distribution
could also be different for # and ¢ -angles. Monitoring the acceptance rate in
some systematic and automatic way might be of help in this, although some
care was actually given to prevent the acceptance rate getting much under 10 %
or over 90 % during annealing. Connected to the transition probability is the
temperature setting, as smaller transitions also generally mean smaller changes
in energy and smaller required temperature for some acceptance rate. The start-
ing temperature and the shape of the temperature lowering function should in
any case probably be optimized in some way for the best results. The stochastic
nature of the algorithm can also be a problem, since the resulting energy is not
necessarily exactly right even if the conformation is essentially correct. This
could be countered by running a local optimization routine at the end of the of
the annealing.

References

[1] K. A. Dill and J. L. MacCallum, “The protein-folding problem, 50 years
on,” Science, vol. 338, no. 6110, pp. 1042-1046, 2012.

[2] C. M. Dobson, “Protein folding and misfolding,” Nature, vol. 426, no. 6968,
p. 884, 2003.

[3] F.H. Stillinger, T. Head-Gordon, and C. L. Hirshfeld, “Toy model for protein
folding,” Physical review F, vol. 48, no. 2, p. 1469, 1993.

[4] S. Govindarajan and R. A. Goldstein, “On the thermodynamic hypothesis of
protein folding,” Proceedings of the National Academy of Sciences, vol. 95,
no. 10, pp. 5545-5549, 1998.

[5] D. J. Wales and J. P. Doye, “Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to 110

atoms,” The Journal of Physical Chemistry A, vol. 101, no. 28, pp. 5111—
5116, 1997.

[6] B. Olson, I. Hashmi, K. Molloy, and A. Shehu, “Basin hopping as a general
and versatile optimization framework for the characterization of biological
macromolecules,” Advances in Artificial Intelligence, vol. 2012, p. 3, 2012.

6 Appendices

Optimal energy
Annealing reliability
Basinhopping reliability

BBBBB | ABBBA | BABAB | AABAA | BBBBA
-0,59 -0,40 0,65 3,11 -0,067
0,55 0,1 1,0 0,6 0,1

0,1 0,0 0,5 0,65 0,2

BBBAD | BBBAA | ABBAD | ABBAA | BABAA
0,18 0,040 0,026 0,93 1,35
0,25 1,0 1,0 0,3 0,35

0,0 1,0 1,0 0,1 0,5

BBABD | ABABA | BAAAD | AAAAA | BBABA

0,24 2,22 0,52 4,35 0,62
0,9 0,8 1,0 0,35 0,9
0,15 0,15 0,45 0,45 0,6

BBAAD | BBAAA | ABAAB | ABAAA | BAAAA

0,096 0,55 1,38 2,99 -2,20
1,0 0,95 1,0 0,8 0,95
1,0 0,55 0,45 0,5 0,55

Table 3: The energy of the optimal configuration from the 20 annealing and
basinhopping runs for chains of length 5 and the proportions of runs that reached

the correct energy within a deviation of 0,005.

BEBBEB ABBBA BABAB AABAA BEBBA

ABBAB ABBAA BABAA

Figure 4: The optimal conformations of the six different chains of length 5 found
using simulated annealing. The first acid in the chain always starts at (0,0,0).

10

AAABEBBAAA

10 —2.3

Figure 5: The optimal conformation of the chain AAABBBBAAA found using
simulated annealing.

11

=T.0 -6.8 ! ; -6.2 -6.0
Optimized energy

Figure 6: The distribution of the optimized energies got using simulated an-
nealing 300 times on the chain AAABBBBAAA .

12

=

S S

Rardiar

Figure 7: Simple autostereograms for the chain with 10 amino acids.
For instructions on how to view autosterecograms, see e.g.
vision-and-eye-health.com/autostereograms.html| (Visited 12.5.2019).
The middle one seems to work especially well.

13

http://www.vision-and-eye-health.com/autostereograms.html
http://www.vision-and-eye-health.com/autostereograms.html

	Introduction
	Theory
	Simulation
	Results
	Conclusions
	Appendices

